Как определить сколько ватт светодиод смд. Сколько энергии потребляет светодиод

Бывает иногда, что обнаруживаете светодиод, а его параметры вам неизвестны. Как же быть в такой ситуации? Некоторые светодиоды вы сможете найти у нас на сайте в разделе «Каталог», «Светодиоды» и просмотреть их характеристики и попытаться найти свой среди них. Если это удастся, тогда все проблемы решены. Но бывает, что найти свой светодиод не получается. Что делать в этом случае? Здесь придется вычислять параметры опытным путем, изменяя напряжение и измеряя его (хотелось бы сказать, что к лазерным светодиодом данная методика не подойдет). Да это кропотливый труд и здесь, вам потребуются определенные приборы такие как: один, а лучше для удобства два мультиметра(ну или хотя бы один), блок питания с возможностью изменять напряжение, сопротивление (желательно 500 Ом).
Собираем схему.

V1 и V2 – мультиметры, которыми будем измерять изменения тока.
Далее начинаем по не многу увеличивать напряжение на блоки питания и наблюдать изменение в точках V1 и V2. Так же параллельно следим за светодиодом. Свойство светодиода в том, что даже при небольшом напряжении, если он исправен, он должен начать светиться. Если это не происходит, то либо он подключен неправильно, либо он не работает. Так же если блок питания отображает подаваемый ток, то это дает возможность использовать только 1 мультиметр, второй же будет не нужен. При достижении номинального тока светодиода, он должен достаточно ярко светиться и разница в точках V1 и V2 будет заметна. Можно добавить примерно 15-20 % это и будет максимальное напряжение данного светодиода. Если же светодиод не светиться, а ток идет, возможно, это инфракрасный светодиод, тогда возьмите камеру и посмотрите через нее.

Основные характеристики светодиодов:

1. Эффективность свечения (светоотдача) - наиболее значимая характеристика светодиодов, обуславливающая экономическую целесообразность их использования в системах освещения различного назначения. Определяется, как отношение потока излучения к затрачиваемой мощности (Лм/Вт).

Для сравнения:

10-12лм/Вт - лампа накаливания;

40-150Лм/Вт - газоразрядные лампы;

50-120Лм/Вт - светодиоды.

Таким образом, светодиоды характеризуются прекрасными показателями светоотдачи, что дает возможность им выигрышно конкурировать с натриевыми, галогеновыми и люминесцентными лампами. Помимо этого, при выпуске светодиодных светильников не требуются отражатели, потому что их световой поток направляется в одной полуплоскости.

2. Мощность

Светодиоды малой мощности: до 0,5Вт;

Светодиоды средней мощности: 0,5-3Вт;

Светодиоды большой мощности: 3Вт и выше.

3. Цветовая температура:

2500-4000К: белый теплый свет, схож с лампами накаливания;

4000-6500К: белый нейтральный свет;

6500-9500К: белый холодный свет.

В результате экспериментальных исследований установлено, что именно белый нейтральный свет отличается наибольшей четкостью передачи цветов и является наиболее удачным для работы с документами в офисных условиях.

4. Деградация – это процесс постепенной потери показателей работоспособности светодиодов. Обычно производители указывают около 100 тыс. час. работы и более. Существенное влияние на ресурс светодиодов оказывает чрезмерное воздействие токов, превышающих их номинальное значение, и высоких температур, для предотвращения преждевременного старения применяются специальные конструкторские решения.

К еще одной разновидности деградации светодиодов относится пусковое воздействие. Оно невысоко и составляет порядка 5-6%, выявляется обычно в первые 1000 часов горения светильника.

5. Угол свечения

Обычно у светодиодов он равен 120-140 градусов, а в индикаторных светодиодах - 15-45 градусов.

Технологические новшества в наше время происходят постоянно. Ежегодное появление новинок электроники, бытовой техники, автомобилестроения стало привычным явлением. То, что удивляло дватри года назад, часто уже безнадежно устарело к сегодняшнему дню. Большинство изменений касается улучшения существующих вещей, например, двигатель автомобиля становится более экономичным и экологически чистым от модели к модели. Вносимые улучшения понятны в основном узкому кругу специалистов. Двигатели производятся теми же фирмами на тех же заводах. Внешне индустрия меняется довольно медленно и постепенно.

Гораздо реже происходят принципиальные изменения – технические революции. Во время революции меняется сам подход к решению задачи. Это приводит к кардинальному изменению свойств изделий и отрасли в целом.

Сегодня в мире осветительной техники происходит как раз такая техническая революция. Эта революция в течение следующих 3-5 лет может полностью изменить рынок светильников, а также повлиять на список ключевых игроков. Есть повод задуматься над ситуацией как существующим производителям, так и новым компаниям, не занимавшимся до сих пор этой сферой.
Приведем исторический пример. До 70-х годов прошлого века основой радиотехнических устройств были электронные вакуумные приборы – радиолампы. Первые компьютеры были построены именно на лампах, и именно лампам они обязаны своими циклопическими размерами и стоимостью при вычислительной мощности калькулятора.
В 50-х годах началось активное развитие полупроводниковой техники , появились транзисторы, а позже интегральные схемы, содержащие сотни и тысячи транзисторов. Электронные лампы были полностью вытеснены из большинства областей, объемы их призводства упали в десятки раз. Многие компании-производители вынуждены были полностью переориентироваться или исчезнуть с рынка. Полупроводники завоевали мир, открыли возможности для тысяч компаний и огромного количества новых приложений. Ниже мы вернемся к этому примеру, чтобы увидеть интересные параллели между революцией полувековой давности и тем, что происходит сейчас на наших глазах.
Полупроводники, эти удивительные материалы - основа современной электроники. Они обладают важными свойствами, применяемыми в транзисторах и микросхемах. Однако этим их использование не ограничивается.
Еще в начале прошлого века был замечен эффект слабого свечения в области электрического контакта полупроводников разных типов проводимости. Тогда это явление не было понято и изучено. Как считается, первый полупроводниковый светодиод был изготовлен в 1962 году в США.
До 90-х годов ХХ века светодиоды получили широкое распространение в качестве устройств индикации и декоративных элементов. Использованию светодиодов в осветительной технике мешали трудности в получении белого цвета свечения. Дело в том, что кристалл, на котором построен диод, может излучать свет только строго определенной длины волны. Наш глаз воспринимает такое излучение как чистый цвет из спектра, например, красный или зеленый. Мы видим белый цвет, когда в наш глаз попадает очень широкий спектр длин волн или смесь нескольких определенных основных цветов.
Эту проблему можно решить тремя способами.
Первый – собрать на одном кристалле светодиоды трех цветов, например, красного, зеленого и синего.
Этот путь нашел свое применение в видеоэкранах и элементах декоративной подсветки с изменяющимся цветом.Второй – использовать принцип люминесцентных ламп: излучение ультрафиолетового светодиода попадает на люминофор, светящийся белым светом под действием ультрафиолета.


Третий способ – использовать синий светодиод, покрытый желтым люминофором. Смесь желтого и синего цвета также воспринимается глазом как белый цвет (рис. 1).

Последний способ оказался самым удобным и эффективным для изготовления сверхъярких светодиодов. Такие светодиоды были впервые продемонстрированы в 1997 году. С этого времени начинается и использование светодиодов для решения задач общего освещения.
В настоящий момент общедоступными являются светодиоды, дающие световой поток до 140 люмен на 1 ватт потребляемой мощности. В лабораторных условиях получены устройства, излучающие до 200 люмен 1 на ватт. Теоретический предел сегодняшних технологий составляет порядка 300 люмен 1 на ватт.
Для сравнения: лампа накаливания дает около 7 лм/Вт, а современная энергосберегающая люминесцентная лампа до 105 лм/Вт. Сравнимую со светодиодами эффективность на уровне 130 лм/Вт имеют натриевые лампы высокого давления. Существенным недостатком натриевых ламп является их почти монохроматический оранжево-желтый свет, ухудшающий цветопередачу предметов.
Световой поток источника, выраженный в люменах, характеризует его излучающую способность без учета диаграммы направленности. Когда мы оцениваем полезный эффект, производимый источником света, нам важно распределение света от светильника в пространстве. Например, дорожный светильник должен давать равномерное и яркое световое пятно на дороге, при этом не слепить водителей и не освещать дальний край обочины. Чтобы достичь этого, применяются рефлекторы и линзы – отражающая или фокусирующая оптика. Эффективность любого рефлектора или линзы зависит, в значительно степени, от геометрии источника света. Светодиод – это практически точечный источник, который позволяет добиться 80-90% эффективности при формировании освещенной области. Лампа излучает во все стороны и имеет большие размеры поверхности, испускающей свет. Чтобы добиться нужной диаграммы направленности, придется пожертвовать от 40 до 70% света. По этой причине, даже при одинаковой энергетической эффективности (люмен на ватт), светодиод в полтора-два раза эффективней традиционной лампы.


У фирмы Osram имеется уникальное решение – светодиод со встроенной линзой, имеющий диаграмму направленности, идеально подходящую для освещения улиц и автомагистралей (рис. 2). При использовании такого диода нет необходимости в применении какой-либо вторичной оптики, следовательно, нет потерь света и дополнительных денежных затрат.

Светодиоды претендуют на то, чтобы стать серьезной альтернативой другим источникам света.
Рассмотрим их преимущества и недостатки, чтобы самостоятельно оценить, насколько оправданы эти ожидания.
Итак, первое и самое главное достоинство – энергетическая эффективность. Электрический в светодиоде преобразуется непосредственно в кванты света – фотоны. Такое преобразование теоретически происходит без потери энергии – сколько энергии потрачено, столько и излучается. На практике потери, конечно, есть, но уже достигнуты впечатляющие результаты по сравнению с другими источниками. Светораспределение светильника создается с гораздо меньшими потерями света.
Надежность и время жизни. Начнем с самого определения времени жизни устройства. Для светодиода за время жизни принято количество часов, которое он проработает до снижения его светового потока на 30%. Лидирующие производители (например, Osram) заявляют о времени жизни более 100 тыс. часов. Сравним: лампа накаливания – 1000 часов, стандартная люминесцентная лампа – 12 тыс. часов, газоразрядные лампы – до 40 тыс. часов. Данные по традиционным источникам света приведены по критерию полного выхода источника из строя.
Малый размер светодиода. Мощный одноваттный светодиод серии OSLON производства Osram имеет размер корпуса 3х3 мм. Это позволяет вписы-вать его в любую конструкцию светильника, а также создавать миниатюрные и при этом очень мощные осветительные приборы. (рис. 3).
Экологическая безопасность. Светодиод сам по себе содержит сотые доли грамма вещества в кристаллической, крайне химически инертной форме. Люминесцентная лампочка содержит очень опасные для человека и природы вещества, такие как ртуть. Утилизация таких ламп дорогостоящий и сложный процесс.
Время включения-выключения и управление яркостью. Светодиоду требуются доли микросекунд (150 нс для белого одноваттного светодиода Golden Dragon Plus) для начала работы с полной отдачей после подачи на него электрического тока. Это дает возможность регулировать световой поток путем подачи коротких импульсов тока, следующих с высокой частотой. Таким образом, яркость светильника может регулироваться в любых пределах с сохранением 100 % эффективности. Можно отметить и еще один эффект – светодиод некритичен к количеству циклов включений-выключений, что является бичом, например, недорогих энергосберегающих ламп.
Механическая прочность и стойкость к ударам. Светодиод – это твердый кристалл в пластиковой или керамической оболочке. При желании его можно уничтожить при помощи молотка. На практике он абсолютно не чувствителен к вибрациям и другим воздействиям, характерным для условий промышленного применения.
Стабильная работа при низких температурах без сокращения срока службы и потери яркости.
Светодиодному светильнику не требуется запуск, он практически мгновенно выходит на заданный температурный режим.

Недостатки светодиодов.

Самой большой проблемой при проектировании светодиодных светильников является решение вопроса о том, что делать с выделяемым теплом. Как уже говорилось, светодиод преобразует электрический непосредственно в световой поток.
Это достоинство, которое превращается в недостаток, когда речь заходит об отводе тепла. Дело в том, что светодиод практически не излучает мощности в инфракрасном диапазоне спектра. Инфракрасное излучение мы ощущаем как тепло, исходящее от лампочки. Оно бесполезно с точки зрения наших глаз, но очень хорошо отводит лишнее тепло от источника света.
На практике в свет превращается около 25% энергии, а остальное переходит в тепло. Полупроводники не любят нагрев, их срок службы существенно падает при температуре выше 130-150 0С. (для сравнения – спираль лампочки накаливания нагревается до 2300 0С, а у галогенной – до 2700 0С).
Итак, недостаток № 1: нужно отводить тепло и делать это приходиться при помощи радиаторов, а иногда даже активных систем охлаждения. Для того, чтобы получить ожидаемую эффективность светодиодного светильника, требуется позаботиться о правильном источнике питания. Источник должен обеспечивать стабилизированный (а не напряжение, как требует подавляющее большинство устройств) на уровне от 100 мA до 1 А в зависимости от типа диода. Для достижения эффективности обычно используются импульсные источники с коррекцией коэффициента мощности.
Недостаток № 2 – относительно сложная схема питания.
Недостаток № 3, вероятно существующий лишь временно, – высокая цена светодиодов. В светотехнической отрасли принято говорить о люменах, получаемых на затраченный доллар или евро. На сегодняшний момент эта величина составляет до 3 евроцентов за 1 люмен, что на порядок выше, чем стоимость 1 люмена в люминесцентной лампе. Это основной фактор, препятствующий широкому распространению светодиодных светильников в быту. Однако в тех областях, где значение имеет стоимость владения, включающая стоимость обслуживания, светодиоды уже обходятся дешевле обычных ламп.
Чтобы в этом убедиться, достаточно подсчитать стоимость работ с применением автовышки по замене ламп в мачтах уличного освещения, не говоря уж о существенной экономии электроэнергии. Очень часто переход на светодиоды производится просто изза физической нехватки электрической мощности в районе.
Не случайно в начале статьи приведена история о радиолампах и транзисторах. Помимо лучших технических характеристик, которыми, кстати, первые транзисторы не особенно могли похвастаться, полупроводники открыли дорогу в отрасль для тысяч мелких компаний. С их появлением резко уменьшился финансовый и технологический барьер для выхода на рынок. Первые компьютеры новой эры были собраны в гаражах. Гиганты потеряли монополию, и в электронную индустрию пришла невероятно сильная конкуренция.
Появление светодиодов открывает дорогу к производству светильников огромному количеству компаний, которые ранее этим не занимались. Все, что нужно на первом этапе, – это обычное оборудование для сборки электронных плат. В нашей стране существует избыток такого производства, который ждет своего часа.

Последнее время, в интернете на различных компьютерных форумах я замечаю людей, которые хотят применить светодиоды для моддинга, однако не обладают достаточными знаниями для этого. Вместо полезных советов, такие люди зачастую выслушивают на тех же форумах рассуждения различных дилетантов, которые не разбираются в теме, а даже самый просто вопрос порождает эпические споры с философскими рассуждениями. Большинство информация из таких тем не только не принесет никакой пользы, а зачастую может и навредит. Для того что бы снять все самые популярные вопросы и заблуждения, которые касаются применения светодиодов в моддинге , я и решил написать сей небольшой опус.

Что такое светодиоды

В последнее время ведется много разговоров о светодиодах, постоянно появляются новости о все более мощных светодиодах, новых разработках и новых товарах на основе светодиодов (стоит вспомнить хотя бы новые жк-мониторы со светодиодной подсветкой от компании Apple). Так что же такое светодиод? Светодиод – это прибор на основе полупроводника, который излучает свет при пропускании через него электрического тока . Существует большое количество различных полупроводниковых материалов из которых делают светодиоды, причем характеристики светодиодов (цвет свечения, яркость свечения и т.д.) зависят от химического состава данных материалов.


Светодиоды разных размеров, цветов и яркости

Применение светодиодов в моддинге

Светодиоды это одни из первых вещей, которые начали применять в моддинге , ведь еще в конце 1999 – начале 2000 года первые моддеры меняли в своих корпусах стоковые светодиоды наскучивших цветов на более яркие светодиоды интересных и необычных цветов. Кроме того, некоторые моддеры самостоятельно изготавливали вентиляторы со светодиодной подсветкой, светодиодные лампы подсветки для корпуса и прочие моддинг-аксессуары. С появлением оптических мышек, моддеры начали заменять в них стандартные светодиоды, а так же устанавливать дополнительные. Однако нельзя сказать что, с появлением серийных вентиляторов с подсветкой, применение светодиодов в моддинге ушло в историю, скорее оно перешло в разряд классики, как и раундинг проводов (который, как всем известно, вошел в метаболизм каждого моддера) и прорезка блоухолов. Действительно, в современных корпусах уже с завода стоят яркие светодиоды синего, белого и других цветов, но ведь мы же хотим сделать вещи уникальными и персонализированными, ведь для этого мы и занимаемся моддингом, а учитывая теперешнее распространение дешевых и мощных светодиодов, не использовать их в моддинге – грех =), посему их используют по полной программе: ими подсвечивают корпуса, клавиатуры, вентиляторы, гравировки, люминесцентные краски и так далее. Светодиоды отлично применимы там, где нужна локальная или компактная подсветка, яркая или наоборот тусклая, ими отлично подсвечивать систему водяного охлаждения и т.п.


Вентилятор со светодиодной подсветкой


гибкая LED лента

Гибкая светодиодная лампа

Светодиоды, в случае применения их в моддинге, обладают следующими преимуществами и недостатками.

Преимущества

  • Яркие и насыщенные цвета
  • Надежность (длительный срок службы)
  • Высокая эффективность
  • Практически не греются
  • Компактный размер

Недостатки

  • Легко перегорают при неправильном подключении
  • Далеко не plug-and-play, с точки зрения подключения

Разновидности светодиодов

Светодиоды разделяются на разные разновидности в зависимости от размеров, количества кристаллов в одном корпусе, яркости, мощности, по цвету излучения, а так же другим параметрам.


Пример светодиодов самых популярных размеров


Светодиоды различной формы и цвета


Свечение светодидов с диффузным (цветным) корпусом

Геометрические форма и размеры. Самыми популярными являются светодиоды в цилиндрическом корпусе стандартизированных размеров: 3/5/10 мм в диаметре, реже 8 мм, хотя иногда встречаются и до 20 мм в диаметре. Также существуют SMD-светодиоды, которые отличаются очень компактным размером – до 2 х 2 мм, предназначены они для припаивания прямо на плату и обычно используются для подсветки экранов. Существуют также светодиоды выполненные в корпусах квадратной или прямоугольной формы.

Количество кристаллов. В большинстве случаев, в корпусе одного светодиода находится один полупроводниковый кристалл, однако бывают случаи в которых в корпус одного светодиода устанавливают больше одного кристалла, например:

  • Многоцветные светодиоды

В случае необходимости сделать многоцветных светодиод, в корпусе одного светодиода устанавливается более одного полупроводникового кристалла, причем сами кристаллы сделаны из разных материалов и соответственно излучают разные цвета: синий, зеленый, красный, желтый и так далее. Двухцветные светодиоды чаще всего используют как индикаторы (обычно красный/зеленый цвет), трехцветные светодиоды чаще всего используют для подсветки дисплеев и постройки светодиодных экранов так как данные светодиоды могут отображать три базовых цвета (синий/зеленый/красный), при смешивании которых можно получить всю палитру цветов, необходимых для отображения фото и видеоматериалов с достаточным качеством. Четырехцветные светодиоды достаточно редкие и содержат кристаллы для отображения, как видно из названия, четырех цветов (синий/зеленый/красный/желтый) и применяются в основном для создания белого света с высокими качественными характеристиками CRI (Color rendering index).

  • Светодиоды повышенной мощности

Для повышения яркости (количества света) светодиода иногда в корпус одного светодиода устанавливают несколько светоизлучающих кристаллов одного цвета (обычно ставят четыре кристалла), чем кратно увеличивают яркость светодиода. Это можно сравнить с четырехъядерными процессорами =).

Яркость. Из-за большого спектра применения светодиодов, производители выпускают светодиоды с различной яркостью: от не очень ярких для индикаторных целей до суперякрих, в основном для подсветки чего-то. На показатель яркости также влияет диаграмма направленности светодиода, например светодиод одной мощности с углом излучения в 20 градусов кажется более ярким, чем светодиод такой же мощности но с более широким углом излучения, например 140 градусов.

Мощность. Для разных целей производятся светодиоды различных мощностей: от сотых долей ватта до серьезных 5 и более ватт на одном кристалле. Типичные моддерские, так называемые «ультраяркие», светодиоды имеют мощность примерно в 60 мВт (примерно 1/16 Вт), и если их использовать в подсветке корпуса среднего размера то их может понадобиться примерно от 15 до 25 штук. Среднестатистический четырехъкристальный суперяркий светодиод имеет мощность примерно в 240 мВт (1/4 Вт) и таких светодиодов для подсветки корпуса среднего размера нужно примерно от 4 до 8 штук, в зависимости от прочих особенностей. К классу супермощных светодиодов относятся светодиоды с мощностью от одного ватта, что на первый взгляд вроде бы и не много, однако это только на первый взгляд – такие светодиоды в среднем в 15-20 раз ярче, чем самые распространенные светодиоды! Одним или двумя такими светодиодами можно подсветить весь корпус!

Цвет. В зависимости от полупроводника, на основе которого выполнен светодиод, так же отличается цвет, излучаемый светодиодом. В продаже чаще всего можно встретить светодиоды таких цветов: красный, оранжевый, желтый, зеленый, синий, фиолетовый, ультрафиолетовый. Светодиоды всех цветов находят свое применение в моддинге, причем как для индикаторных целей, так и для подсветки. Существуют также светодиоды, работающие в инфракрасном диапазоне, но поскольку их излучение не видно невооруженному глазу – их применение ограничено пультами ДУ и видеокамерами ночного видения.

Особого внимания заслуживают синие, фиолетовые и ультрафиолетовые светодиоды – все они вызывают люминесценцию (флюоресценцию) некоторых красителей, но в разной степени. Синие светодиоды вызывают не очень яркую люминесценцию, а также немного искажают ее цвет задевая своим синим излучением. Фиолетовые светодиоды напротив – выглядят тусклыми, но вызывают сильную люминесценцию, обычно их продают под видом ультрафиолетовых светодиодов, но это не так. Ультрафиолетовые светодиоды довольно-таки редко встречаются в продаже, а те что встречаются обычно являются ультрафиолетовыми светодиодами длинноволнового диапазона ультрафиолета, так называемого УФ-А (UV-A) – самого безопасного, внешне эти светодиоды выглядят очень тусклыми из-за низкой чувствительности человеческого глаза к диапазону мение 400 нм, но эти светодиоды вызывают еще более сильную люминесценцию, чем фиолетовые – это связано с большей энергией этого диапазона излучения.

Вечение светодиодов с прозрачным корпусом

Типичные характеристики светодиодов

Две главных характеристики светодиодов это напряжение и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА, в свою очередь одноватные светодиоды обычно потребляют 300-400 мА. Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

При использовании светодиодов, лучше уточнить сколько светодиоду необходимо вольт у продавца или изготовителя, но когда эта информация не доступна, можно воспользоваться следующей таблицей.

Таблица примерных напряжений светодиодов в зависимости от цвета

Цветовая характеристика Длинная волны Напряжение
Инфракрасные от 760 нм до 1.9 В
Красные 610 – 760 нм от 1.6 до 2.03 В
Оранжевые 590 – 610 нм от 2.03 до 2.1 В
Желтые 570 – 590 нм от 2.1 до 2.2 В
Зеленые 500 – 570 нм от 2.2 до 3.5 В
Синие 450 – 500 нм от 2.5 до 3.7 В
Фиолетовые 400 – 450 нм 2.8 до 4 В
Ультрафиолетовые до 400 нм от 3.1 до 4.4 В
Белые Широкий спектр от 3 до 3.7 В

Правила подключения и расчет светодиодов

Светодиод пропускает электрический ток только в одном направлении, а это значит что для того чтобы светодиод излучал свет, он должен быть правильно подключен. У светодиода два контакта: анод(плюс) и катод (минус). Обычно, длинный контакт у светодиода – это анод, но бывают и исключения так что лучше уточнить данный факт в технических характеристиках конкретного светодиода.

Светодиоды относятся к таком типу электронных компонентов которому, для долгой и стабильной работы, важно не только правильное напряжение, но и оптимальная сила тока – так что всегда, при подключении светодиода, нужно их подключать через соответствующий резистор. Иногда этим правилом пренебрегают, но результат чаще всего один – светодиод или сразу сгорает, или его ресурс очень значительно сокращается. В некоторые светодиоды резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды в продаже встречаются довольно-таки редко и чаще всего к светодиоду необходимо подключать внешний резистор.

Стоит помнить, что резисторы так же отличаются своими характеристиками и, для подключения их к светодиодам, вам необходимо выбрать резистор правильного номинала. Для того чтобы рассчитать необходимый номинал резистора следует воспользоваться законом Ома – это один из самых важных физических законов, связанных с электричеством. Данный закон все учили в школе, но практически никто его не помнит =).

Закон Ома – это физический закон с помощью которого вы можете определить взаимозависимость напряжения (U), силы тока (I) и сопротивления (R). Суть эго проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не меняются.

Этот закон визуально отображается при помощи формулы: U= I*R
Когда вы знаете напряжение и сопротивления, с помощью этого закона можна найти силу тока по формуле: I = U/R
Когда вам известно напряжение и сила тока, можно найти сопротивление: R = U/I
Когда вам известна сила тока и сопротивление, можно вычислить напряжение: U = I*R

Теперь рассмотрим на примере. У вас есть светодиод с рабочим напряжением в 3 В и силой тока в 20 мА, вы его хотите подключить к источнику напряжения 5В из USB-разъема или БП, чтобы при этом он не сгорел. Значит у нас есть напряжение 5 В, но светодиоду нужно только 3 В, значит от 2 В нам необходимо избавиться (5В – 3В=2В). Чтобы избавится от лишних 2 В нам необходимо подобрать резистор с правильным сопротивлением, которое рассчитывается следующим образом: мы знаем напряжение от которого необходимо избавиться и знаем силу тока нужную светодиоду – воспользуемся формулой изложенной выше R = U/I. Соответственно 2В/0.02 А= 100 Ом. Значит вам необходим резистор на 100 Ом.

Иногда, в зависимости от характеристик светодиода, необходимый резистор получается с не стандартным номиналом, который нельзя найти в продаже, например 129 или 111.7 Ом =). В таком случае необходимо просто взять резистор немного большего сопротивления, чем рассчитанный – светодиод будет работать не на 100 процентов своей мощности, а примерно на 90-95 %. В таком режиме светодиод будет работать более надежно, а снижение яркости визуально не будет заметно.

Также можно рассчитать насколько мощный резистор вам нужен – для этого умножаем напряжение, которое будет задерживаться на резисторе, на силу тока, которая будет в цепи. В нашем случае это 2В х 0.02 А = 0.04 Вт. Значит вам подойдет резистор такой мощности или большей.

Светодиоды иногда подключают по несколько штук параллельно или последовательно, используя один резистор. Для правильного подключения следует помнить что при параллельном подключении суммируется сила тока, а при последовательном суммируется требуемое напряжение. Параллельно и последовательно можно подключать только одинаковые светодиоды с использование одного резистора, а если вы используете разные светодиоды с разными характеристиками, то лучше рассчитать каждому светодиоду свой резистор – так будет надежней. Светодиоды даже одной модели имеют небольшое расхождение в параметрах и, при подключении большого количества светодиодов параллельно или последовательно, это небольшое расхождение в параметрах может выдать результатом много сгоревших светодиодов =). Еще одним подводным камнем может стать тот факт, что продавец или производитель (намного реже) может дать немного не верные данные по светодиодам, а сами светодиоды могут иметь не четкое рабочее напряжение, а набор из параметров минимального/оптимального и максимального напряжения. Данный фактор не будет особо влиять при подключении небольшого количества светодиодов, а в случае подключения большого количества – результатом могут быть все те же сгоревшие светодиоды. Так что с параллельным и последовательным подключением не стоит чересчур увлекаться, надежней будет чтобы к каждому светодиоду или небольшой группе светодиодов (3-5 штук) подключался отдельный резистор. Рассмотрим несколько примеров подключения.


Схема параллельного подключения светодиодов


Схема последовательного подключения светодиодов

Пример 1. Вы хотите подключить последовательно три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В (например из molex-разъема). Три светодиода по 3 вольта каждый будут вместе потреблять 9 вольт (3 В x 3=9 В). Наш источник тока обладает напряжением в 12 вольт, соответственно от 3 вольт надо будет избавиться (12 В – 9 В = 3 В). Так как подключение последовательное, то сила тока составит 20мА, соответственно 3 вольта (напряжение, от которого необходимо избавится) делим на 0.02 А (сила тока, необходимая каждому светодиоду) и получаем значение необходимого сопротивления – 150 Ом. Значит нужен резистор на 150 Ом.

Пример 2. У вас в наличии четыре светодиода, каждый из которых рассчитан на 3 вольта, и источник питания на 12 В. В такой ситуации можно подумать что резистор не нужен, однако это не так – светодиоды очень чувствительны к силе тока и лучше добавить в цепь резистор на 1 Ом. Резистор данного номинала не повлияет на яркость свечения, а будет чем-то на подобии «предохранителя» – светодиоды будут работать намного надежней. Без применения резистора, в данному случае, светодиоды могут попросту сгореть, быстро или не очень.

Пример 3 . Вы хотите параллельно подключить три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В. Поскольку при параллельном подключении суммируется сила тока, а не напряжение, трем светодиодам потребуется сила тока в 60 мА (20 мА x 3 = 60 мА). Наш источник тока обладает напряжением в 12 вольт, а светодиодам необходимо напряжение в 3 вольта, соответственно от 9 вольт необходимо избавиться (12 В – 3 В = 9 В). Так как подключение параллельное, то сила тока составит 60мА, соответственно 9 вольт (напряжение, от которого необходимо избавится) делим на 0.06 А (сила тока, необходимая всем светодиодам) и получаем значение необходимого сопротивления – 150 Ом. Значит нужен резистор на 150 Ом.

Так же в интернете существует большое количество разнообразных «калькуляторов для светодиодов», которыми вы можете воспользоваться. Достаточно зайти на соответствующий сайт, указать характеристики светодиодом и источника тока и вы получите все необходимые данные по резистору, а так же его цветовую маркировку. Пример такого калькулятора вы можете увидеть на сайте

Последнее время, в интернете на различных компьютерных форумах я замечаю людей, которые хотят применить светодиоды для моддинга, однако не обладают достаточными знаниями для этого. Вместо полезных советов, такие люди зачастую выслушивают на тех же форумах рассуждения различных дилетантов, которые не разбираются в теме, а даже самый просто вопрос порождает эпические споры с философскими рассуждениями. Большинство информация из таких тем не только не принесет никакой пользы, а зачастую может и навредит. Для того что бы снять все самые популярные вопросы и заблуждения, которые касаются применения светодиодов в моддинге, я и решил написать сей небольшой опус.

Что такое светодиоды

В последнее время ведется много разговоров о светодиодах, постоянно появляются новости о все более мощных светодиодах, новых разработках и новых товарах на основе светодиодов (стоит вспомнить хотя бы новые жк-мониторы со светодиодной подсветкой от компании Apple). Так что же такое светодиод? Светодиод — это прибор на основе полупроводника, который излучает свет при пропускании через него электрического тока. Существует большое количество различных полупроводниковых материалов из которых делают светодиоды, причем характеристики светодиодов (цвет свечения, яркость свечения и т.д.) зависят от химического состава данных материалов.

Применение светодиодов в моддинге

Светодиоды это одни из первых вещей, которые начали применять в моддинге, ведь еще в конце 1999 — начале 2000 года первые моддеры меняли в своих корпусах стоковые светодиоды наскучивших цветов на более яркие светодиоды интересных и необычных цветов. Кроме того, некоторые моддеры самостоятельно изготавливали вентиляторы со светодиодной подсветкой, светодиодные лампы подсветки для корпуса и прочие моддинг-аксессуары. С появлением оптических мышек, моддеры начали заменять в них стандартные светодиоды, а так же устанавливать дополнительные. Однако нельзя сказать что, с появлением серийных вентиляторов с подсветкой, применение светодиодов в моддинге ушло в историю, скорее оно перешло в разряд классики, как и раундинг проводов (который, как всем известно, ) и прорезка блоухолов. Действительно, в современных корпусах уже с завода стоят яркие светодиоды синего, белого и других цветов, но ведь мы же хотим сделать вещи уникальными и персонализированными, ведь для этого мы и занимаемся моддингом, а учитывая теперешнее распространение дешевых и мощных светодиодов, не использовать их в моддинге — грех =), посему их используют по полной программе: ими подсвечивают корпуса, клавиатуры, вентиляторы, гравировки, люминесцентные краски и так далее. Светодиоды отлично применимы там, где нужна локальная или компактная подсветка, яркая или наоборот тусклая, ими отлично подсвечивать систему водяного охлаждения и т.п.




Светодиоды, в случае применения их в моддинге, обладают следующими преимуществами и недостатками.

Преимущества

  • Яркие и насыщенные цвета
  • Надежность (длительный срок службы)
  • Высокая эффективность
  • Практически не греются
  • Компактный размер

Недостатки

  • Легко перегорают при неправильном подключении
  • Далеко не plug-and-play, с точки зрения подключения

Разновидности светодиодов

Светодиоды разделяются на разные разновидности в зависимости от размеров, количества кристаллов в одном корпусе, яркости, мощности, по цвету излучения, а так же другим параметрам.






Геометрические форма и размеры. Самыми популярными являются светодиоды в цилиндрическом корпусе стандартизированных размеров: 3/5/10 мм в диаметре, реже 8 мм, хотя иногда встречаются и до 20 мм в диаметре. Также существуют SMD-светодиоды, которые отличаются очень компактным размером — до 2 х 2 мм, предназначены они для припаивания прямо на плату и обычно используются для подсветки экранов. Существуют также светодиоды выполненные в корпусах квадратной или прямоугольной формы.

Количество кристаллов. В большинстве случаев, в корпусе одного светодиода находится один полупроводниковый кристалл, однако бывают случаи в которых в корпус одного светодиода устанавливают больше одного кристалла, например:

  • Многоцветные светодиоды

В случае необходимости сделать многоцветных светодиод, в корпусе одного светодиода устанавливается более одного полупроводникового кристалла, причем сами кристаллы сделаны из разных материалов и соответственно излучают разные цвета: синий, зеленый, красный, желтый и так далее. Двухцветные светодиоды чаще всего используют как индикаторы (обычно красный/зеленый цвет), трехцветные светодиоды чаще всего используют для подсветки дисплеев и постройки светодиодных экранов так как данные светодиоды могут отображать три базовых цвета (синий/зеленый/красный), при смешивании которых можно получить всю палитру цветов, необходимых для отображения фото и видеоматериалов с достаточным качеством. Четырехцветные светодиоды достаточно редкие и содержат кристаллы для отображения, как видно из названия, четырех цветов (синий/зеленый/красный/желтый) и применяются в основном для создания белого света с высокими качественными характеристиками CRI (Color rendering index).

  • Светодиоды повышенной мощности

Для повышения яркости (количества света) светодиода иногда в корпус одного светодиода устанавливают несколько светоизлучающих кристаллов одного цвета (обычно ставят четыре кристалла), чем кратно увеличивают яркость светодиода. Это можно сравнить с четырехъядерными процессорами =).

Яркость. Из-за большого спектра применения светодиодов, производители выпускают светодиоды с различной яркостью: от не очень ярких для индикаторных целей до суперякрих, в основном для подсветки чего-то. На показатель яркости также влияет диаграмма направленности светодиода, например светодиод одной мощности с углом излучения в 20 градусов кажется более ярким, чем светодиод такой же мощности но с более широким углом излучения, например 140 градусов.

Мощность. Для разных целей производятся светодиоды различных мощностей: от сотых долей ватта до серьезных 5 и более ватт на одном кристалле. Типичные моддерские, так называемые «ультраяркие», светодиоды имеют мощность примерно в 60 мВт (примерно 1/16 Вт), и если их использовать в подсветке корпуса среднего размера то их может понадобиться примерно от 15 до 25 штук. Среднестатистический четырехъкристальный суперяркий светодиод имеет мощность примерно в 240 мВт (1/4 Вт) и таких светодиодов для подсветки корпуса среднего размера нужно примерно от 4 до 8 штук, в зависимости от прочих особенностей. К классу супермощных светодиодов относятся светодиоды с мощностью от одного ватта, что на первый взгляд вроде бы и не много, однако это только на первый взгляд — такие светодиоды в среднем в 15-20 раз ярче, чем самые распространенные светодиоды! Одним или двумя такими светодиодами можно подсветить весь корпус!

Цвет. В зависимости от полупроводника, на основе которого выполнен светодиод, так же отличается цвет, излучаемый светодиодом. В продаже чаще всего можно встретить светодиоды таких цветов: красный, оранжевый, желтый, зеленый, синий, фиолетовый, ультрафиолетовый. Светодиоды всех цветов находят свое применение в моддинге, причем как для индикаторных целей, так и для подсветки. Существуют также светодиоды, работающие в инфракрасном диапазоне, но поскольку их излучение не видно невооруженному глазу — их применение ограничено пультами ДУ и видеокамерами ночного видения.

Особого внимания заслуживают синие, фиолетовые и ультрафиолетовые светодиоды — все они вызывают люминесценцию (флюоресценцию) некоторых красителей, но в разной степени. Синие светодиоды вызывают не очень яркую люминесценцию, а также немного искажают ее цвет задевая своим синим излучением. Фиолетовые светодиоды напротив — выглядят тусклыми, но вызывают сильную люминесценцию, обычно их продают под видом ультрафиолетовых светодиодов, но это не так. Ультрафиолетовые светодиоды довольно-таки редко встречаются в продаже, а те что встречаются обычно являются ультрафиолетовыми светодиодами длинноволнового диапазона ультрафиолета, так называемого УФ-А (UV-A) — самого безопасного, внешне эти светодиоды выглядят очень тусклыми из-за низкой чувствительности человеческого глаза к диапазону мение 400 нм, но эти светодиоды вызывают еще более сильную люминесценцию, чем фиолетовые — это связано с большей энергией этого диапазона излучения.


Типичные характеристики светодиодов

Две главных характеристики светодиодов это напряжение и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например четырехъкристальные светодиоды обычно рассчитаны на 80 мА, так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА, в свою очередь одноватные светодиоды обычно потребляют 300-400 мА. Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

При использовании светодиодов, лучше уточнить сколько светодиоду необходимо вольт у продавца или изготовителя, но когда эта информация не доступна, можно воспользоваться следующей таблицей.

Таблица примерных напряжений светодиодов в зависимости от цвета

Правила подключения и расчет светодиодов

Светодиод пропускает электрический ток только в одном направлении, а это значит что для того чтобы светодиод излучал свет, он должен быть правильно подключен. У светодиода два контакта: анод(плюс) и катод (минус). Обычно, длинный контакт у светодиода — это анод, но бывают и исключения так что лучше уточнить данный факт в технических характеристиках конкретного светодиода.

Светодиоды относятся к таком типу электронных компонентов которому, для долгой и стабильной работы, важно не только правильное напряжение, но и оптимальная сила тока — так что всегда, при подключении светодиода, нужно их подключать через соответствующий резистор. Иногда этим правилом пренебрегают, но результат чаще всего один — светодиод или сразу сгорает, или его ресурс очень значительно сокращается. В некоторые светодиоды резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды в продаже встречаются довольно-таки редко и чаще всего к светодиоду необходимо подключать внешний резистор.

Стоит помнить, что резисторы так же отличаются своими характеристиками и, для подключения их к светодиодам, вам необходимо выбрать резистор правильного номинала. Для того чтобы рассчитать необходимый номинал резистора следует воспользоваться законом Ома — это один из самых важных физических законов, связанных с электричеством. Данный закон все учили в школе, но практически никто его не помнит =).

Закон Ома — это физический закон с помощью которого вы можете определить взаимозависимость напряжения (U), силы тока (I) и сопротивления (R). Суть эго проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не меняются.

Этот закон визуально отображается при помощи формулы: U= I*R
Когда вы знаете напряжение и сопротивления, с помощью этого закона можна найти силу тока по формуле: I = U/R
Когда вам известно напряжение и сила тока, можно найти сопротивление: R = U/I
Когда вам известна сила тока и сопротивление, можно вычислить напряжение: U = I*R

Теперь рассмотрим на примере. У вас есть светодиод с рабочим напряжением в 3 В и силой тока в 20 мА, вы его хотите подключить к источнику напряжения 5В из USB-разъема или БП, чтобы при этом он не сгорел. Значит у нас есть напряжение 5 В, но светодиоду нужно только 3 В, значит от 2 В нам необходимо избавиться (5В — 3В=2В). Чтобы избавится от лишних 2 В нам необходимо подобрать резистор с правильным сопротивлением, которое рассчитывается следующим образом: мы знаем напряжение от которого необходимо избавиться и знаем силу тока нужную светодиоду — воспользуемся формулой изложенной выше R = U/I. Соответственно 2В/0.02 А= 100 Ом. Значит вам необходим резистор на 100 Ом.

Иногда, в зависимости от характеристик светодиода, необходимый резистор получается с не стандартным номиналом, который нельзя найти в продаже, например 129 или 111.7 Ом =). В таком случае необходимо просто взять резистор немного большего сопротивления, чем рассчитанный — светодиод будет работать не на 100 процентов своей мощности, а примерно на 90-95 %. В таком режиме светодиод будет работать более надежно, а снижение яркости визуально не будет заметно.

Также можно рассчитать насколько мощный резистор вам нужен — для этого умножаем напряжение, которое будет задерживаться на резисторе, на силу тока, которая будет в цепи. В нашем случае это 2В х 0.02 А = 0.04 Вт. Значит вам подойдет резистор такой мощности или большей.

Светодиоды иногда подключают по несколько штук параллельно или последовательно, используя один резистор. Для правильного подключения следует помнить что при параллельном подключении суммируется сила тока, а при последовательном суммируется требуемое напряжение. Параллельно и последовательно можно подключать только одинаковые светодиоды с использование одного резистора, а если вы используете разные светодиоды с разными характеристиками, то лучше рассчитать каждому светодиоду свой резистор — так будет надежней. Светодиоды даже одной модели имеют небольшое расхождение в параметрах и, при подключении большого количества светодиодов параллельно или последовательно, это небольшое расхождение в параметрах может выдать результатом много сгоревших светодиодов =). Еще одним подводным камнем может стать тот факт, что продавец или производитель (намного реже) может дать немного не верные данные по светодиодам, а сами светодиоды могут иметь не четкое рабочее напряжение, а набор из параметров минимального/оптимального и максимального напряжения. Данный фактор не будет особо влиять при подключении небольшого количества светодиодов, а в случае подключения большого количества — результатом могут быть все те же сгоревшие светодиоды. Так что с параллельным и последовательным подключением не стоит чересчур увлекаться, надежней будет чтобы к каждому светодиоду или небольшой группе светодиодов (3-5 штук) подключался отдельный резистор. Рассмотрим несколько примеров подключения.




Пример 1. Вы хотите подключить последовательно три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В (например из molex-разъема). Три светодиода по 3 вольта каждый будут вместе потреблять 9 вольт (3 В x 3=9 В). Наш источник тока обладает напряжением в 12 вольт, соответственно от 3 вольт надо будет избавиться (12 В — 9 В = 3 В). Так как подключение последовательное, то сила тока составит 20мА, соответственно 3 вольта (напряжение, от которого необходимо избавится) делим на 0.02 А (сила тока, необходимая каждому светодиоду) и получаем значение необходимого сопротивления — 150 Ом. Значит нужен резистор на 150 Ом.

Пример 2. У вас в наличии четыре светодиода, каждый из которых рассчитан на 3 вольта, и источник питания на 12 В. В такой ситуации можно подумать что резистор не нужен, однако это не так — светодиоды очень чувствительны к силе тока и лучше добавить в цепь резистор на 1 Ом. Резистор данного номинала не повлияет на яркость свечения, а будет чем-то на подобии «предохранителя» — светодиоды будут работать намного надежней. Без применения резистора, в данному случае, светодиоды могут попросту сгореть, быстро или не очень.

Пример 3 . Вы хотите параллельно подключить три светодиода, каждый из которых рассчитан на 3 В и 20 мА, к источнику тока с напряжением 12 В. Поскольку при параллельном подключении суммируется сила тока, а не напряжение, трем светодиодам потребуется сила тока в 60 мА (20 мА x 3 = 60 мА). Наш источник тока обладает напряжением в 12 вольт, а светодиодам необходимо напряжение в 3 вольта, соответственно от 9 вольт необходимо избавиться (12 В — 3 В = 9 В). Так как подключение параллельное, то сила тока составит 60мА, соответственно 9 вольт (напряжение, от которого необходимо избавится) делим на 0.06 А (сила тока, необходимая всем светодиодам) и получаем значение необходимого сопротивления — 150 Ом. Значит нужен резистор на 150 Ом.

Так же в интернете существует большое количество разнообразных «калькуляторов для светодиодов», которыми вы можете воспользоваться. Достаточно зайти на соответствующий сайт, указать характеристики светодиодом и источника тока и вы получите все необходимые данные по резистору, а так же его цветовую маркировку. Пример такого калькулятора вы можете увидеть на сайте

Светодиоды бесспорно являются самыми экономичными источниками освещения, дешевле только солнечный свет. Но даже несмотря на свою экономичность, некоторые экземпляры могут быть достаточно прожорливыми. И все же, сколько потребляет светодиод электроэнергии?

«Прожорливость» устройства напрямую зависит от его яркости.

Светоизлучающий кристалл работает на напряжении 2,8 – 3,5 В (зависит от цвета свечения). Внутри кристалла диода находится p-n переход, при прохождении через который тока и излучается свет. От скольких вольт работает светодиод зависит от способа соединения модулей на матрице. Это может быть и 3В, и 12В.

Индикаторные

Индикаторные диоды – маломощные устройства с низким потреблением тока. Уже исходя из названия понятно, что они предназначены не для освещения, а для индикации работоспособности.

Ток потребления у изделий этого класса не превышает 20 мА, при напряжении 3В за час потребление электроэнергии при их работе составит лишь 0,06 Вт или чуть больше 0,5кВт за год непрерывного свечения.

Осветительные


В отличие от индикаторных, у моделей предназначенных для освещения площадь p-n перехода, а соответственно площадь светоизлучающей поверхности и яркость, существенно выше. Ток потребления кристалла может составлять 150-300 мА, при напряжении питания 3,3В это от 0,5 до 1Вт.

В мощных диодах на одной матрице может находится несколько элементов. Мощность светодиодных матрицы, используемой в прожекторах может достигать несколько сот ватт.

Напряжение питания устройств на светодиодах

Независимо от яркости и мощности модуля, все они собираются из светодиодных матриц, которые рассчитаны на питание 3,3В. Для мощных модулей используют различные комбинации соединения с питанием от 12В до 24В. Это необходимая мера для уменьшения нагрузки по току.

Рассмотрим следующую ситуацию:

Необходим источник света мощностью 50Вт. Для его создания потребуется пятьдесят одноваттных модулей. Если все их подключить параллельно, напряжение питания составит лишь 3,3 В, но сила тока в цепи будет достигать 50 х 0,3А = 15 Ампер. Это очень-очень много.

Все электроприборы в квартире при одновременном включении редко требуют больше 10-15 Ампер. Большая сила тока приводит к значительному тепловыделению через проводники, и что бы запитать такой агрегат понадобился бы силовой многожильный медный кабель толщиной в палец.

Для снижения тока в цепи светодиодные модули соединяют последовательно. В классической схеме подключения, рассмотренное выше устройство будет состоять из восьми каскадов, состоящих из шести последовательно включённых светодиодов с напряжением питания 24В. Тогда мощность нагрузки составит лишь 8 х 0,3А = 2,4 А. А это уже ненамного больше мощности обыкновенной зарядки для мобильного телефона.

Напряжение питания различных бытовых устройств на диодах

Светодиодные фонарики

Диодные фонари существенно различаются по яркости и мощности. Поэтому точно сказать сколько вольт в светодиодной лампочке сложно.

В обыкновенном бытовом фонарике установлен яркий диод на 3,3 В. Благодаря использованию специальных схем повышающих напряжение они комфортно работают от одной пальчиковой батарейки на 1,2В либо аккумулятора на 1,8В.

На сколько вольт светодиоды в фонариках высокой яркости? Сигнальные фонари особого назначения оснащаются специальными диодными матрицами с напряжением питания 3,3В – 4,7В и током до 2000мА.

Для их питания используются мощные литиевые аккумуляторы на 3,7В.

Светодиодные ленты

Напряжение питание ленты и ее мощность зависят от типа используемых светодиодов.

Тип светодиода Количество диодов на погонный метр, шт Напряжение питания, В Ток нагрузки, А Мощность 1м, Вт
3528 60 12 0,4 4,8
3528 120 12 0,8 9,6
3528 240 12 1,6 19,2
5050 30 12 0,6 7,2
5050 60 12 1,2 14,8
5050 120 12 2,4 29
5050 240 24 2,4 58
Loading...Loading...