Схема люминесцентной лампы, лампы дневного света. Эксплуатация устройств с люминесцентными лампами

Люминесцентные лампы дневного света очень распространены в своём применении, по причине наличия у них определённых достоинств, которые не имеют обычные старотипные электрические лампами накаливания. Они более экономней в плане потребления электрической энергии, так как значительно меньше тратят энергии на выделение тепла. Кроме того у ламп дневного света более рассеянное освещение, которое, к тому же, можно выбирать и по цвету излучаемого цвета (среди которых наиболее используемое на практике являются лампы с белым цветом излучаемого света).


Говоря о специфики работы ламп дневного света: в отличие от ламп накаливания, которые достаточно просто подключить к сети, для люминесцентных ламп необходимо создать определённые условия для запуска и последующей нормальной работы. В силу того, что в лампах дневного света имеется пары ртути и инертный газ. Как нам известно, из курса физики, газы не являются хорошими электрическими проводниками, и поэтому для их ионизации нужны специальные условия (в нашем случае это будет действие высокого напряжения для создания электрического пробоя газовой среды).


Кроме этого, для облегчения электрического пробоя и зажигания люминесцентной лампы внутри её изначально предусмотрены специальные спиральки подогрева. При подключении люминесцентной лампы дневного света к электрической схеме и подачи на неё электричества происходит разогрев этих спиралек. Это повышение температуры спиралей значительно облегчают выход отрицательно заряженных частиц (электронов) из металла электрических электродов. Обычная подача сетевого напряжения (220 вольт) на контакты электрической лампы дневного света не зажжет её, а только спалит.


Для того что бы всё таки запустить люминесцентную лампу однажды сделали весьма несложную электрическую схему на индуктивном дросселе. Данная схема люминесцентной лампы создаёт все необходимые условия для зажигания и последующего поддержания горения лампы. При подаче на индуктивный дроссель переменного напряжения возникают электромагнитные процессы, которые ограничивают силу тока, проходящего по данной цепи. То есть, дроссель в цепи с переменным напряжением служит в роле электрического сопротивления. Это позволяет ограничить сетевое напряжение, которое подаётся на лампу дневного света (она работает при меньшем напряжении).


Вторая функция дросселя заключается в генерации высоковольтного импульса напряжения, которое и позволяет осуществить электрический пробой газового промежутка люминесцентной лампы. Это высокое ЭДС появляется за счет внутренней самоиндукции дросселя, но для этого импульса нужно создать кратковременное прерывание (в цепи). За функцию прерывания в схеме лампы дневного света отвечает электрический стартёр.


На электрическую схему лампы дневного света поступает напряжение 220 вольт. Оно протекает через индуктивный дроссель и идёт на первую спиральку люминесцентной лампы, с неё перетекает на стартёр и с него идёт ко второй спиральки, с которой уходит на второй провод электрической сети. Сначала в этой схеме срабатывает стартёр. Электрическое напряжение работы тлеющего разряда нашего стартера немного меньше сетевого напряжения, но значительней больше напряжения номинальной работы лампы. Контакты стартёра (внутренние) нагреваются и замыкаются, что обеспечивает протекание тока через спиральки люминесцентной лампы, разогревая их до 800-900 градусов. Далее, контакты стартера размыкаются, что и порождает высоковольтный импульс дросселя, который сообщается на электроды лампы дневного света, тем самым обеспечивая пробой и последующее горение.


При подключении одной лампы дневного света элементы схемы будут следующими: если сама лампа на 40 Вт, то и индуктивный дроссель на 40 Вт, а электрический стартер на напряжение 220 вольт. В случае подключения 2-х ламп к одному индуктивному дросселю, общая схема будет выглядеть по 2-му варианту рисунка. В таком случае элементы следующие: индуктивный дроссель на 40 Вт, а лампы на 20 Вт и стартера, напряжением по 127 вольт каждый. Конденсатор ёмкостью 0.22 мкФ.

Наиболее часто применяемые устройства импульсного (стартерного) зажигания люминесцентных ламп обладают некоторыми существенными недостатками: неопределенным временем зажигания, перегрузкой электродов лампы при ее включении, повышенным уровнем радиопомех.

Как показывает практика, в стартерных устройствах (упрощенная схема одного из них приведена на рис. 1) наибольшему нагреву подвергаются участки нитей накала, к которым подводится сетевое напряжение. -десь зачастую нить перегорает.

Более перспективны - безстартерные устройства зажигания, где нити накала по своему прямому назначению не используются, а выполняют роль электродов газоразрядной лампы - на них подается напряжение, необходимое для поджига газа в лампе.



Вот, к примеру, устройство, рассчитанное на питание лампы мощностью до 40 Вт (рис. 2). Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор С- - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.



В этом и последующих устройствах пары контактов разъема каждой нити накала можно соединить вместе и подключить к "своей" цепи - тогда в светильнике будет работать даже лампа с перегоревшими нитями.

Схема другого варианта устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 3. -десь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VD-), а в другой - С- (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.



Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис. 4. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

Дополнив обычный светильник с лампой накаливания данным устройством с люминесцентной лампой, можно улучшить общее или местное освещение. Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или 100 Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью 200 или 250 Вт. В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.



Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис. 5. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

В рассмотренных устройствах используются диодные мосты КЦ405А или КЦ402А, а также выпрямительные диоды КД243Г-КД243Ж или другие, рассчитанные на ток до 1 А и обратное напряжение 400 В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К73-16. Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИ80-80ВТ). Вместо одной лампы мощностью 40 Вт допустимо включить последовательно две по 20 Вт.

Часть деталей узла монтируют на плате из одностороннего фольгированного стеклотекстолита, на которой оставлены площадки для подпайки выводов деталей и соединительных лепестков для подключения узла к цепям светильника. После установки узла в корпус подходящих габаритов его заливают эпоксидным компаундом.

А. КАВЫЕВ, г. Уфа

Проблема питания ламп дневного света по-прежнему привлекает внимание читателей нашего журнала. И такой интерес неудивителен, так как лампы дневного света отличаются экономичностью, многообразием цветовых оттенков излучаемого светового потока, длительным сроком службы.

Вопросы эксплуатационной надежности ламп дневного света (ЛДС), их "реанимации" неоднократно освещались на страницах журнала "Радио" . Для повышения надежности ЛДС в их рекомендуют питать выпрямленным током сети с использованием бесстартерного устройства запуска. Нити накала лампы по прямому назначению не используют, каждая из них шунтирована перемычкой и выполняет функцию электрода, на который подают напряжение, необходимое для включения лампы. По сути, предлагается мгновенное "холодное зажигание" резким повышением напряжения на ЛДС при пуске без предварительного подогрева ее электродов.

Однако отметим, что зажигание с холодными электродами серийных ЛДС, предназначенных для работы с подогревом нитями накала, является для электродов более тяжелым режимом, чем включение обычным образом . Лампы быстро изнашиваются, и в этом случае, естественно, говорить о наработке среднего гарантированного заводом-изготовителем срока службы ЛДС не представляется возможным.

Другая особенность при работе ЛДС на постоянном токе - возникновение явления катафореза из-за перемещения ионов ртути в лампе к катоду. В результате происходит затемнение лампы со стороны анода, что снижает ее световой поток. Уменьшить влияние такого явления можно, если периодически (один-два раза в месяц), согласно рекомендации в [б], менять полярность подключения ЛДС, а это усложняет эксплуатацию светильников.

К сказанному следует добавить, что зажигание ЛДС с холодными электродами требует повышения напряжения до 400...750 В. Такое напряжение, несмотря на его кратковременность, небезопасно в эксплуатации, особенно в быту.

Поэтому приведенные в советы больше подойдут для ЛДС, которые не могут работать от сети переменного тока, что бывает при обрыве или разрушении нитей накала, потере эмиссии одним из электродов лампы.

Для улучшения общего или местного освещения в предлагается обычный светильник с лампой накаливания дополнить светильником с ЛДС, включенным на питание постоянным током, причем лампа накаливания выполняет функцию балластного резистора. Так, для ламп накаливания мощностью 75 или 100 Вт необходимо установить светильник с ЛДС мощностью 20 Вт, а для 200 или 250 Вт - 80-ваттную ЛДС.

Однако использование лампы накаливания вместо дросселя значительно снижает экономичность такого комбинированного светильника. Лампа накаливания мощностью 100 Вт и напряжением 220...235 В создает световой поток 1000 лм. При работе такой лампы, выполняющей функцию балластного резистора, совместно с ЛДС мощностью 20 Вт напряжение на ней - около 180 В (по результатам измерения), что составляет 80 % от номинального. Мощность, потребляемая лампой накаливания в этом случае, составляет 70 % от номинальной (примерно 70 Вт), а световой поток - всего 45 % (450 лм). При световом потоке ЛДС в 1200 лм общий световой поток комбинированного светильника составит 1650 лм, а потребляемая мощность - 90 Вт. В то же время ЛДС мощностью 30 Вт создает световой поток в 2100 лм, на 27 % больше при меньшей в три раза потребляемой мощности. Очевидно, что намного экономичнее вместо комбинированного светильника использовать обычный с ЛДС мощностью 30 Вт, исключив дополнительные затраты на монтажные работы по соединению светильников между собой.

Проведенный подобным образом анализ работы комбинированного светильника с лампой накаливания 200 Вт и ЛДС мощностью 80 Вт, рабочее напряжение которой 102 В, в отличие от ЛДС - 20 Вт, показывает, что световой поток лампы накаливания составляет всего лишь 5,4 % (280 лм) от светового потока ЛДС (5220 лм), а общая потребляемая мощность - 160 Вт (80 Вт лампа накаливания и 80 Вт ЛДС). По создаваемому световому потоку лампа "двухсотка" в комбинированном светильнике будет эквивалентна лампе накаливания "сороковке" (300 лм). По сути, в таком светильнике лампа накаливания только "греет", потребляя мощность 80 Вт, но не светит (5,4 %), и, естественно, необходимость в таком светильнике отсутствует.

Повысить световой поток комбинированного светильника с ЛДС мощностью 30, 40, 65, 80 Вт можно, если использовать лампы накаливания на напряжение 127 В. Однако в этом случае, при пробое диодов моста, от которого питается ЛДС, лампа накаливания оказывается под напряжением сети 220 В, и ее нить перегорает . Чтобы исключить выход из строя лампы накаливания, ее необходимо включить в цепь постоянного тока последовательно с ЛДС (см. схему). Подобный способ изложен в [б]. При включении выключателя SA1 устройство работает как удвоитель напряжения, выходное напряжение которого приложено к промежутку катод-анод лампы EL2. После зажигания лампы устройство переходит в режим двуполупе-риодного выпрямления с активной нагрузкой. Выпрямленное напряжение примерно одинаково распределено между лампами EL1 и EL2, что справедливо для ЛДС мощностью 30, 40, 65, 80 Вт, имеющих рабочее напряжение в среднем около 100 В.

Для ЛДС мощностью 80 Вт целесообразно использовать две лампы накаливания на 127 В по 60 Вт каждая, включив их параллельно. При таком включении световой поток ламп накаливания будет составлять примерно 24 % от потока ЛДС.

Для ЛДС мощностью 65 Вт наиболее подходящая лампа накаливания на 100 Вт, 127 В. Световой поток этой лампы в комбинированном светильнике примерно 20 % от потока ЛДС. Соответственно для ЛДС мощностью 40 Вт необходима лампа накаливания на 60 Вт, 127 В. Ее световой поток составит 20 % от потока ЛДС. И наконец, для ЛДС мощностью 30 Вт можно применить две лампы накаливания на 127 В по 25 Вт каждая, включив их параллельно. Световой поток этих двух ламп накаливания - около 17 % светового потока ЛДС. Такое увеличение светового потока лампы накаливания в комбинированном светильнике объясняется тем, что они работают при напряжении, близком к номинальному, когда их световой поток приближается к 100 %. В то же время, при напряжении на лампе накаливания около 50 % от номинального, их световой поток составляет всего лишь 6,5 %, а потребляемая мощность - 34 % от номинальной .

Для питания ЛДС мощностью 30, 40, 65 Вт лучше всего использовать диодную сборку КЦ404А, которая имеет держатель предохранителя. ЛДС мощностью 80 Вт (рабочий ток 0,86 А) потребует более мощных диодов, например, КД202Р, КД203Г, Д248Б.

ЛИТЕРАТУРА

1. Кавыев А. Питание лампы дневного света постоянным током. -Радио, 1997, № 5, с. 36.
2. Ховайко О. Восстановление люминесцентных ламп. - Радио, 1997, Ms 7, с. 37.
3. Есеркенов Ж. Способ реанимации ламп дневного света. - Радио, 1998, № 2, с. 61.
4. Справочник по ионным приборам. Под ред. Д. С. Гурлева. - Киев: Техжка, 1970.
5. Данилов В. Бездроссельное питание люминесцентных ламп: Сб.: "В помощь радиолюбителю", вып. 114. - М.: Патриот, 1992.
6. Боровский В., Партала О. Об использовании люминесцентных ламп с перегоревшими нитями накала. - РадioАматор, 1993, № 1, с. 36.
7. Тарнижевский М. В., Афанасьева Е. И. Экономия энергии в электроустановках предприятий жилищно-коммунального хозяйства. - М.: Стройиздат, 1989.

Loading...Loading...