Постоянный ток где находится. Постоянный и переменный ток

Сегодня наша задача – понять, что такое переменный ток и чем он отличается от постоянного. Хотя этот материал я и поместил в рубрику «Практикум», практики особой не будет, только теория.

Итак, в наших руках гипотетический прибор, который может показывать, что у нас происходит на двух проводах под напряжением. Подключаем его к обычной батарейке, чтобы уяснить принцип работы, и видим следующую картину:

Синяя полоска, проведенная против отметки 1.5 показывает, что напряжение (разность потенциалов) между щупами прибора равно 1.5 вольта, причем напряжение это не изменяется во времени, оно постоянно. Если к батарейке подключить лампу, то через нее потечет тоже постоянный ток. Для удобства принято считать, что при постоянном напряжении ток течет от положительного полюса к отрицательному и тоже постоянно.

Теперь подключим наш прибор к осветительной розетке. Картина на экране несколько изменилась:


В первый момент времени напряжение между выводами розетке равно нулю (точка 0), потом оно начнет плавно увеличиваться и в точке 1 достигнет максимума – +220 вольт на одном выводе относительно другого. Дальше оно снова начнет уменьшаться до 0 (точка 2) и поползет вниз, станет отрицательным. В точке 3 оно достигнет своего отрицательного максимума — -220 В и снова начнет стремиться к нулю. В точке 4 напряжение исчезнет, как говорят, период колебания закончится, и дальше процесс повторится.

Что будет, если мы подключим к розетке нагрузку (скажем, лампочку)? В первый момент тока не будет, потом он начнет увеличиваться до максимума, потом снова уменьшаться, а потом… потечет в другую сторону, так как полярность между проводниками изменится. Ток в другую сторону тоже будет увеличиваться, потом постепенно уменьшится до 0 (в точке 4).

Итак, перед нами переменное напряжение, способное вызывать переменный ток – сначала в одну сторону, потом в другую. В нашей осветительной сети напряжение это равно 220 В – это как раз изображено на графике – сначала 220 одной полярности, потом 220 другой с плавным переходом через 0. Меняется полярность в розетке 50 раз в секунду или иначе с частотой 50 герц. Герц (Гц) – единица измерения частоты. 1 Гц – один период колебаний в секунду.

А теперь подведем итоги. Главное отличие переменного напряжения от постоянного – разность потенциалов между двумя проводниками постоянно меняет свою полярность, тогда как при постоянном напряжении «плюс» всегда на одном проводнике, а «минус» на другом. Вполне естественно, что через нагрузку, подключенную к источнику переменного напряжения, ток потечет переменный – то в одну сторону, то в другую. Чем выше частота, тем чаще будет меняться направление тока, причем, как мы видим из нашего графика, меняться плавно. Общепринятое обозначение переменного тока и напряжения вы, наверное, видели не раз: « ~ ».

Если вы поближе познакомитесь с переменным напряжением, то узнаете, что оно не так просто, как я описал (к примеру, существует амплитудное (которое, кстати, выше 220 В), мгновенное, среднеквадратичное и т.п. напряжения в одной единственной розетке), но для общего понятия процесса этого материала, я думаю, вполне достаточно.

Ну а по поводу гипотетического волшебного прибора – такие приборы есть и называют их осциллографами.

По физическому принципу действия, положенному в основу построения и конструктивному исполнению, электромеханические приборы относят к группе аналоговых средств измерения, показания которых являются непрерывной функцией измеряемой величины.

Электромеханические приборы непосредственной оценки измеряемой физической величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения. Последнее обстоятельство позволяет производить измерение наиболее информативного параметра сигнала без методических ошибок. Электромеханические приборы строят по обобщенной струк­турной схеме, представленной на рис. 1.

Рис. 1 Обобщенная струк­турная схема электромеханических приборов

Измерительная схема электромеханического прибора содержит совокупность сопротивлений, индуктивностей, емкостей и других элементов электрической цепи прибора и осуществляет количественное или качественное преобразование входной величины х в электрическую величину х", на которую реагирует измерительный механизм. Механизм преобразует электрическую величину х" в механическое угловое или линейное перемещение а, значение которого отражается на шкале отсчетного устройства прибора, проградуированной в единицах измеряемой величины N(x). Для этого необходимо чтобы каждому значению измеряемой величины соответствовало одно и только одно, определенное отклонение α . При этом параметры схемы и измерительного механизма не должны меняться при изменении внешних условий: температуры окружающей среды, частоты питающей сети и других факторов.

Классификацию электромеханических приборов проводят на основании типа измерительного механизма.

Наиболее распространены в практике радиотехнических измерений следующие системы: магнитоэлектрическая, электромагнитная, электродинамическая, электростатическая.

Данные измерительные системы представлены в табл. 3.2, где приведены также формулы передаточной функции (уравнения шкалы) измерительного механизма и ряд его технических характеристик. В добавление помещенным в табл. 1 сведениям и рисункам сделаем следующие пояснения.

Таблица 1. Схемы приборов

Магнитоэлектрическая система. В данной системе измерительный механизм состоит из проволочной рамки с протекающим в ней током, помещенной в поле постоянного магнита (магнитопровода). Поле в зазоре, где находится рамка, сделано равномерным за счет особой конфигурации магнитопровода. Под воздействием протекающего тока / рамка вращается в магнитном поле, угол поворота а ограничивают специальной пружиной, поэтому передаточная функция (часто называемая уравнением шкалы) линейна:


α=Iψ 0 /W

где ψ 0 - удельное потокосцепление, определяемое параметрами рамки и магнитной индукцией; W - удельный противодействующий момент, создаваемый специальной пружинкой.

Для расширения пределов измерения амперметров и вольтметров применяют шунты и добавочные сопротивления, которые включают соответственно параллельно и последовательно измерительным механизмам в схемы этих приборов.

Гальванометры

Особую группу измерителей силы тока представляют высокочувствительные магнитоэлектрические приборы - нуль-индикаторы, называемые гальванометрами. Задача гальванометров показать наличие или отсутствие тока в цепи, поэтому они работают в начальной точке шкалы и должны обладать большой чувствительностью.

Гальванометры снабжают только условной шкалой. Поскольку чувствительность гальванометров очень высока, их градировочная характеристика нестабильна и зависит от совокупности внешних влияющих факторов. Поэтому при выпуске на производстве чувствительные гальванометры не градуируют в единицах измеряемой физической величины и им не присваивают классы точности (не нормируют по классам точности).

В качестве же метрологических характеристик гальванометров обычно указывают их чувствительность к току или напряжению и сопротивление рамки. Чувствительность гальванометров выражается в миллиметрах или делениях шкалы (например, S,≈ 10 9 мм/А). Такая высокая чувствительность достигается за счет особой конструкции прибора. Современные гальванометры позволяют измерять токи 10 -5 ... 10 12 А и напряжения до 10 -4 В.

Электромагнитная система

Принцип действия этой системы основан на взаимодействии катушки с ферромагнитным сердечником. Ферромагнитный сердечник втягивается в катушку при любой полярности тока. Это обусловлено тем, что ферромагнетик располагается в магнитном поле так, чтобы поле усилилось. Следовательно, прибор электромагнитной системы может работать на переменном токе. Однако он является низкочастотным, так как с ростом частоты сильно возрастает индуктивное сопротивление катушки.

Достоинствами приборов электромагнитной системы являются простота конструкции, способность выдерживать значительные перегрузки, возможность градуировки приборов, предназначенных для измерений в цепях переменного тока и на постоянном токе. Недостатки приборов - большое потребление энергии, невысокая точность, малая чувствительность и сильное влияние магнитных полей. Приборы электромагнитной системы применяют в основном в качестве щитовых амперметров и вольтметров переменного тока промышленной частоты. Класс точности щитовых приборов составляет 1,5 и 2,3.

Электродинамическая система - измерительный механизм содержит две измерительные катушки: неподвижную и подвиж­ную. Принцип действия основан на взаимодействии катушек, электромагнитные поля которых взаимодействуют в соответствии с формулой:

где М вр - вращающий момент; I 1 , - ток через неподвижную катушку; I 2 - ток через подвижную катушку; Θ - фазовый сдвиг между синусоидальными токами; М - коэффициент взаимной индуктивности катушек.

На основе электродинамического механизма в зависимости от схемы соединения обмоток выполняют вольтметры, амперметры, ваттметры. Достоинством электродинамических вольтметров и амперметров является высокая точность на переменном токе. Пределосновной приведенной погрешности может составлять 0,1... 0,2 %, что является наилучшим достижимым показателем для измерительных приборов переменного тока. Электродинамические приборы используют как образцовые лабораторные измерительные приборы.

Электростатические приборы - принцип действия электростатического механизма основан на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, за­крепленная вместе с указателем, перемещается, взаимодействуя с неподвижной пластиной. Движение ограничивает пружинка. Электростатические приборы по принципу действия механизма явля­ются вольтметрами. Достоинства этих приборов: широкий частотный диапазон (до 30 МГц) и малая мощность, потребляемая из измерительной цепи. Приборы измеряют среднее квадратическое значение напряжения.

Описанные выше приборы не решают многих проблем, возникающих при измерении разных величин на переменном токе: электромагнитный и электродинамический - низкочастотны, электростатический обладает низкой чувствительностью. Применение магнитоэлектрического механизма в сочетании с преобразователем переменного тока в постоянный позволяет существенно расширить возможности измерений на переменном токе. По типу преобразователя данные приборы делят на выпрямительные и термоэлектрические

Выпрямительные приборы состоят из полупроводникового диодного преобразователя переменного тока в постоянный. Вследствие нелинейности вольтамперной характеристики диода спектр протекающего через него тока содержит составляющие частот, кратные частоте измеряемого напряжения, а также посто­янную составляющую, отражающую информацию о значении измеряемой величины.

Технически удобнее выделить постоянную составляющую выходного тока (или напряжения), если ее значение связано определенной функциональной зависимостью с измеряемым на­пряжением, и которая может служить сигналом измерительной информации. В этом случае основные операции, выполняемые электрической схемой вольтметра: преобразование измеряемого напряжения с помощью нелинейного устройства, выделение постоянной составляющей и ее измерение показывающим измерительным прибором.

Схему преобразователя можно строить разными способами, но в результате через измерительный механизм должен протекать однополярный пульсирующий ток (двухполупериодный или однополупериодный).

В табл. 2 показан простейший двухполупериодный (двух­тактный) диодный выпрямитель. В силу того, что магнитоэлек­трическая измерительная система реагирует на постоянный ток, показания прибора будут пропорциональны средневыпрямленному значению переменного тока или напряжения. Данное обстоя­тельство является очень существенным, так как часто приборы проградуированы в средних квадратических значениях синусои­дального тока. Это значит, что на шкале прибора представлено не то значение, на которое реагирует прибор (т.е. средневыпрямленное), а величина, умноженная на К S = 1,11.

Таблица 2


При измерении параметров переменного негармонического сигнала, практически всегда возникает методическая погреш­ность.

Выпрямительные приборы применяют как комбинированные измерители постоянного и переменного тока и напряжения с пределами измерения тока от 1 мА до 600 А, напряжения - от 0,1 до 600 В.

Достоинствами выпрямительных приборов являются высо­кая чувствительность, малое собственное потребление энергии и возможность измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется применяемы­ми диодами. Так, использование точечных кремниевых диодов обеспечивает измерение переменных токов и напряжений на час­тотах 50... 10 Гц. Выпрямительные приборы выполняют в виде многопредельных и многоцелевых лабораторных измерительных приборов. К этому типу измерительных приборов относится так называемый тестер.

Приборы термоэлектрической системы состоят из термоэлектрического преобразователя (проще, термопреобразователя) и магнитоэлектрического микроамперметра. Термопреобразователь содержит нагреватель с протекающим по нему измеряемым током, и термопару, на концах которой возникает термоЭДС. Для измерения термотока в цепь термопары включен микроамперметр. Рабочий спай термопары находится в тепловом контакте с нагревателем, который представляет собой тонкую проволоку из металлического сплава с высоким удельным сопротивлением (нихром, манганин).

Еще более тонкие проволочки из термоэлектродных материалов применяют для изготовления термопары. При прохождении измеряемого тока через нагреватель, место его контакта с термопарой нагревается до требуемой температуры, а холодный спай остается при температуре окружающей среды. Функционирование прибора основано на тепловом действии тока, и поэтому магнитоэлектрический прибор с термоэлектрическим преобразователем измеряет среднее квадратическое значение пе­ременного тока любой формы.

Термоэлектрические приборы применяют в основном для измерения токов. В качестве вольтметров практически не исполь­зуют, так как их входное сопротивление чрезвычайно мало. Достоинством термоэлектрических приборов является широкий частотный диапазон (до 10 МГц). Недостатки: невысокая чувст­вительность, низкий класс точности (1,5...4,0).

Как вы уже догадались, все бытовые приборы можно разделить на две группы: использующие тепловые свойства электричества и преобразующие электрическую энергию в механическую.

Электрические моторы имеются в большинстве бытовых приборов, и часто в случае неисправности двигателя бытовой прибор или выбрасывают как негодный, или несут в ремонт, даже не выяснив причину неисправности. Проблема в том, что не многие разбираются в электрических двигателях, а потому не могут самостоятельно не только ремонтировать, но и установить причину неполадки.

А ведь на самом деле, если знать устройство электрических двигателей, то можно разобраться и в устройстве всех бытовых приборов, так как во всех случаях мотор является основным агрегатом, вырабатывающим механическую энергию, а все остальные детали и узлы бытового устройства предназначены лишь для того, чтобы эту механическую энергию можно было применять в быту.

По историческим меркам электрические двигатели появились сравнительно недавно – всего сто лет назад, но они успели настолько прочно войти в быт, что без их участия уже невозможно обойтись. Первые двигатели существовали в виде математических моделей, а также экспериментальных устройств, на примере магнита и проводника показывающих возможность превращения электрической энергии в механическую.

Со временем знания об электричестве совершенствовались, дополнялись новыми сведениями, создавались все новые и новые модели электрических двигателей, в результате чего и появились индукционные двигатели, работающие на постоянном и переменном токе, которые и применяются в настоящее время в быту и в производстве.

В основе действия этого устройства лежит закон самоиндукции, открытый ученым М. Фарадеем, одним из основателей электродинамики. Согласно этому закону вокруг всякого проводника, по которому проходит электрический ток, создается магнитное поле.

Электрический двигатель представляет собой статор и ротор с замкнутыми обмотками, по которым протекает электрический ток. В результате между статором и ротором создается вихревой магнитный поток, который приводит ротор в движение. Все остальное, как говорится, дело техники. С помощью осевой, ременной, червячной или другой передачи механическое движение передается рабочим узлам, которые и осуществляют работу бытового прибора.

Чтобы магнитный поток создавал механическое движение, необходимо определенное расположение обмоток статора и ротора. В замкнутых обмотках протекают токи, сдвинутые во времени. Обмотки должны располагаться так, чтобы получить круговое поле, что возможно при расположении двух пар обмоток под прямым углом (двухфазный двигатель) или трех обмоток под углом 120° (трехфазный двигатель). Это простейшие модели двигателей, наиболее часто применяемые. Не исключено применение в быту и многофазных двигателей.

В быту применяются двигатели, работающие и на постоянном и на переменном токе. Как правило, двигатели, работающие на постоянном токе, применяются в бытовых приборах индивидуального пользования, а также в домашней электронике, так как обладают меньшей мощностью по сравнению с двигателями, работающими на переменном токе.

Чтобы бытовые приборы, имеющие такие двигатели, можно было подключать к сети с напряжением 220V, в цепи имеется индукционная катушка, которая обладает свойством не пропускать токи определенных частот. Индукционную катушку также принято называть дросселем, или выпрямителем напряжения, так как именно она и преобразует переменный ток в постоянный.

Многие приборы работают одновременно и на постоянном и на переменном токе. Это можно объяснить тем, что бытовой прибор рассчитан на подключение к различным источникам питания: к сети, к аккумуляторам, к выпрямителю переменного тока, чтобы прибором было удобно пользоваться.

В таком случае прибор имеет индукционную катушку, выпрямляющую переменный ток. При включении прибора выпрямитель преобразует его в постоянный, от него и работает электрический двигатель. Если прибор следует подключить к источнику постоянного тока, достаточно установить переключатель в соответствующее положение и прибор работает уже без индукционной катушки, что позволяет пользоваться сменными элементами питания (батарейками), аккумуляторами, универсальными блоками питания.

Двигатели, работающие на переменном токе, применяются в таких бытовых приборах, как стиральные машины, пылесосы, вентиляторы и др., для работы которых нужны двигатели большей мощности.

Двигатели переменного тока принято делить на синхронные, асинхронные и коллекторные. Двигатель может быть выполнен с внутренним или внешним ротором.

Двигатель с внутренним ротором представляет собой статор с обмотками, заключенный в корпус, внутри статора располагается ротор, также имеющий обмотки. Как уже упоминалось, вращение ротора осуществляется за счет вихревого магнитного потока, образующегося в пространстве между статором и ротором.

В синхронных двигателях скорость вращения ротора равна скорости вращения магнитного вихревого потока. В асинхронных двигателях эта скорость не совпадает: ротор может вращаться быстрее или медленнее, может вращаться в противоположную сторону. Если к обмоткам статора и ротора подсоединен механический преобразователь частоты и числа фаз, двигатель является коллекторным.

Двигатель может иметь и внешний ротор. В таком случае статор с обмотками располагается внутри ротора, вращающегося все по тому же закону самоиндуктивности. К обмоткам ротора электричество подводится с помощью скользящих контактов, которые принято называть щетками.

Двигатель с внешним ротором имеет высокий показатель инертности, а потому его применяют там, где требуется инертность. В быту такой двигатель можно увидеть, например, на дрели, причем щетки, как правило, видно через вентиляционные отверстия на корпусе.

Иногда бывает так, что из-за вибрации или по другим причинам скользящие контакты прилегают к обмоткам не плотно, это приводит к тому, что при замыкании цепи двигатель не работает, возникает такое ощущение, что цепь разомкнута. На самом деле достаточно плотнее прижать щетки, и двигатель заработает снова. Бывает даже так, что двигатель работает в горизонтальном положении, но стоит его поставить вертикально – он отключается. В таком случае причина неполадки не может быть в чем-то другом, только как в скользящих контактах.

Когда мотор умирает окончательно?

Многие бытовые приборы имеют механическую защиту электродвигателя от перегрузки. Зачем она нужна?

Обмотки электродвигателей выполняются в специальной изоляции, которая позволяет протекать электрическому току со сдвигами во времени, за счет чего и вырабатывается вихревое магнитное поле, дающее движение ротору. Также известно, что преобразование энергии в электрических двигателях сопровождается выделением теплоты.

При неправильном режиме работы электрического двигателя обмотки нагреваются, что приводит к износу изоляции, в результате чего происходит контакт между витками обмотки, и магнитное поле перестает вырабатываться из-за нарушения фаз.

Поэтому любой бытовой прибор, имеющий электрический двигатель, имеет и систему охлаждения, которая предотвращает износ изоляции. Способы охлаждения могут быть самыми разнообразными: воздушное, водородное, масляное, водяное и др., однако в быту чаще всего применяется воздушное охлаждение.

Например, в кондиционерах охлаждение двигателя производится за счет атмосферного воздуха. Кондиционер имеет два отсека – внутренний и внешний, двигатель расположен во внешнем отсеке.

В охладительных установках охлаждение производится холодильным агентом, который, возвращаясь в компрессор, проходит рядом с мотором, тем самым охлаждая его.

Примерно таким же способом происходит охлаждение двигателя в полотере, имеющем пылесос. Всасываемый воздух проходит через рабочие узлы прибора, тем самым охлаждая их.

Во всех остальных случаях охлаждение происходит за счет прохождения воздуха через вентиляционные отверстия в корпусе. В соответствии с этим мотор располагается так, чтобы во время работы прибора обеспечивалась бы постоянная вентиляция этого устройства.

Во многих случаях такого технического решения достаточно, так как двигатель не сильно нагревается в процессе эксплуатации, однако бывают такие ситуации, когда приходится применять механическую защиту двигателя от перегрева.

Дело в том, что для работы некоторых бытовых устройств необходимы двигатели большой мощности, возможно возникновение ситуации, когда нагрузка на мотор превышает рассчетную. В качестве примера можно привести пылесос, в котором время от времени заполняется фильтр. При включении пылесоса с заполненным пылесборником создается препятствие вихревому потоку, который вырабатывается лопастным винтом, приводимым в движение электрическим мотором, это увеличивает нагрузку на двигатель, и он начинает «буксовать».

Это вредно для двигателя, так как при наличии препятствий вращению ротора в обмотках возникает повышенное напряжение, и электричество, проходя через проводник, которым и являются обмотки, нагревает их. Если при этом температура превышает установленный для изоляции предел, то обмотка «сгорит», а мотор придет в негодность.

В таком случае уже нельзя будет починить даже простейший двухфазный двигатель, тем более многофазный мотор коллекторного типа, который все чаще и чаще применяется в быту. Замкнутая обмотка представляет собой намотанный на корпус медный провод, длина которого может достигать тысячи метров и более. Само собой разумеется, что намотать заново обмотку, причем точно рассчитав количество провода, вручную невозможно. Легче купить новый мотор, а старый выбросить. Если вам когда-нибудь придется услышать, что кто-то из ваших знакомых самостоятельно намотал обмотку трансформатора, можете быть уверены, что он сделал это не ради того, чтобы сэкономить деньги, а для того, чтобы увековечить свое увлечение радиотехникой.

Для предотвращения «перегорания обмотки», во многих устройствах устанавливается механическая защита, которая позволяет отключать двигатель до того, как температура нагрева обмоток станет критической для их изоляции.

Варианты механической защиты могут быть самыми разными. Одним из самых простых способов является нефиксированное закрепление рабочих деталей устройства. Этот способ раньше применялся в лентопротяжных механизмах. Когда лента заканчивается, мотор продолжает крутиться и прокручивает головку на гладком стержне; мотор может работать вхолостую достаточно долго, пока его не выключат.

Однако такой способ неудобен, к тому же его нельзя применить в других устройствах, кроме лентопротяжного механизма. Поэтому используется механическая защита, которая размыкает сеть при возникновении какого-либо препятствия работе двигателя.

Конечно, могут быть и другие способы автоматического отключения, например биметаллический термовыключатель, или электронная схема автоматического отключения, но в бытовых приборах такие средства применяются редко, так как практически в любом случае их можно заменить механическими устройствами, которые дешевле и более надежны в работе.

Loading...Loading...