Сравнение толщины различных материалов при одинаковой теплопередаче. Сравнение теплопроводности строительных материалов по толщине. Требования к шпатлевке и ее выбор

Требования к частным домам и квартирам по уровню сохранения тепла значительно повысились. Многие прибегают к дополнительной отделке чердачных перекрытий, внешних стен по причине постоянного повышения стоимости энергоносителей.

За последние годы появилось достаточно материалов, позволяющих значительно улучшить сбережение тепла в частном доме или квартире. Они также обладают рядом других свойств, что в целом делает их прекрасной альтернативой капитальной реконструкции.

Разновидности и описание

На выбор потребителей предлагаются материалы с различными механическими свойствами.

От этого во многом зависит удобство монтажа и свойства. По данному показателю различают:

  1. Пеноблоки . Изготавливаются из бетона со специальными добавками. В результате химической реакции структура получается пористой.
  2. Плиты. Строительный материал различной толщины и плотности изготавливается при помощи прессования или склеивания.
  3. Вата. Продается в рулонах и характеризуется волокнистой структурой.
  4. Гранулы (крошка). с пеновеществами различной фракции.

Важно знать: подбор материала осуществляется с учетом свойств, стоимости и предназначения. Применение одинакового утеплителя для стен и чердачного перекрытия не позволит получить желаемый эффект, если не указано, что он предназначен для конкретной поверхности.

Сырьем для утеплителей могут выступать различные вещества. Они все делятся на две категории:

  • органические на основе торфа, камыша, древесины;
  • неорганические - изготавливаются из вспененного бетона, минералов, асбестосодержащих веществ и др.

Основные свойства

Эффективность материала во многом зависит от трех основных характеристик. А именно:

  1. Теплопроводность . Это главный показатель материала, выражается коэффициентом, исчисляется в ваттах на 1 метр квадратный. В зависимости от уровня удержания тепла требуется разное количество утеплителя. На него существенно влияет показатель впитывания влаги.
  2. Плотность. Не менее важная характеристика. Чем выше плотность пористого материала, тем эффективнее будет удерживаться тепло внутри здания. В большинстве случаев именно данный показатель является определяющим при выборе утеплителя для стен, этажного перекрытия или крыши.
  3. Гигроскопичность. Устойчивость к воздействию влаги очень важна. Например, цокольные перекрытия, которые расположены в сырых местах, важно утеплять материалом с самой низкой гигроскопичностью, каким является, например, пластиформ.

Нужно обращать внимание и на ряд других показателей. Это устойчивость механическим повреждениям, перепадам температур, горючесть и длительность эксплуатации.

Сравнение основных показателей

Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.

Материал Плотность кг/м3 Теплопроводность Гигроскопичность Минимальный слой, см
Пенополистирол 30-40 Очень низкая Средняя 10
Пластиформ 50-60 Низкая Очень низкая 2
60-70 Низкая Средняя 5
Пенопласт 35-50 Очень низкая Средняя 10
25-32 низкая низкая 20
35-125 Низкая Высокая 10-15
130 Низкая высокая 15
500 Высокая Низкая 20
Ячеистый бетон 400-800 Высокая Высокая 20-40
Пеностекло 100-600 Низкая низкая 10-15

Таблица 1 Сравнение теплоизоляционных свойств материалов

При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.

Особенности применения

Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.

  1. Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
  2. Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена. В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
  3. Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.

Монтаж различных видов

Выбирая тот или иной материал для лучшего сохранения тепла в доме или квартире, нужно учесть особенности его установки. Сложность и набор инструментов для проведения монтажных работ во многом зависит от формы теплоизоляции. А именно:

  • керамзит. Применяется исключительно для полов и межэтажных перекрытий. Нужен шанцевый инструмент и дополнительные стройматериалы (стяжка или доски). Также потребуется гидроизоляционный слой в виде рубероида или другого аналогичного материала.
  • минеральная вата . Правильный монтаж предполагает использование ручного инструмента для крепления каркаса. Минеральная вата очень просто устанавливается в заранее подготовленные ячейки, но требуется равномерное крепление по всей плоскости. Гидроизоляционный слой поверх утеплителя – обязательное условие продолжительной эксплуатации. Может использоваться для вертикальных и горизонтальных поверхностей.

Обратите внимание: занимаясь монтажом любого вида утеплителя важно помнить о гидро- и пароизоляции. Защитить отделку от прямого воздействия влаги очень важно.

  • пенопласт. Плиты крепятся к поверхности дюбелями с «пятаками». Среди необходимых инструментов шуруповерт, перфоратор, строительный нож и дюбеля. Форма стройматериала и легкий вес позволяет даже самостоятельно выполнить весь объем работ за короткий период времени.
  • пеностекло . Для плотного соединения с поверхностью используются механические крепления или же растворы (цемента, мастик и других клеевых составов). Выбор зависит от материала стен. Большой популярностью пользуются блоки, но также в ассортименте имеются плиты и гранулы.

Что выбрать

Ежегодно появляются новые стройматериалы на различных выставках. С их помощью можно значительно сократить расходы на энергоресурсы в холодное время года. Но какой же из них будет оптимальным решением по всем параметрам. Мнения экспертов во многом расходятся.

Подбор материала основывается на свойствах, стоимости и удобстве монтажа. Производители наносят определенную маркировку на изделия, что существенно упрощает выбор. Например, пенопласт для стен, пола или крыши отличается свойствами и имеет специальные отметки.

Многие отдают предпочтение минеральной вате в сухих помещениях, пенопласту в помещениях с повышенной влажностью, и напыляемым утеплителям для труднодоступных мест.

Какой утеплитель лучше: эковата, каменная вата или пенополистирол, смотрите в следующем видео:


Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Теплопроводность материалов влияет на толщину стен

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов. Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Что оказывает влияние на показатель теплопроводности?

Теплопроводность определяется такими факторами:

  • пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;
  • повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;
  • повышенная влажность увеличивает данный показатель.

Использование значений коэффициента теплопроводности на практике

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

Показатели теплопроводности для готовых построек. Виды утеплений

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Выбирая утеплители необходимо обращать внимание на такие факторы, как уровень влажности, влияние повышенных температур и типа сооружения. Учитывайте определенные параметры утепляющих конструкций:

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;
  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;
  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;
  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Обратите внимание! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить, что пена не образует стыков.

Значения коэффициентов теплопередачи материалов в таблице

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении.

Теплопроводность строительных материалов (видео)


Возможно Вам также будет интересно:

Как сделать отопление в частном доме из полипропиленовых труб своими руками Гидрострелка: назначение, принцип работы, расчеты Схема отопления с принудительной циркуляцией двухэтажного дома – решение проблемы с теплом

Экономия энергии - это уже не мода, а необходимость. Рост цен на энергоносители и сокращение выбросов углекислого газа заставляет заботиться о проблемах теплоизоляции. Количество теплопотерь через ограждающие конструкции зависит не только от их толщины, но и от материалов, из которых они изготовлены. Для расчёта этих потерь при проектировании зданий инженеры используют таблицу теплопроводности материалов и утеплителей.

Перед покупкой утеплителя нужно знать, каковы будут потери от того, или иного утеплителя

Проблемы утепления

В нашей стране строители вынуждены бороться с низкими температурами, холодными ветрами, высокой влажностью и другими неблагоприятными погодными условиями. Для комфортной работы и жизни требуются здания с хорошим климатом в помещениях, не зависящим от времени года. Сейчас невозможно массовое строительство стен из кирпича или камня метровой толщиной, потому что это будет недёшево и вряд ли найдётся достаточно покупателей на такие тяжёлые и дорогие здания. Лучший способ сохранить тепло в зимнее время и не впустить его в летнее - использовать в строительстве современные теплоизоляционные и ограждающие материалы.

Устройство тёплых стен было бы несложной задачей, если бы существовал материал твёрдый как камень, тёплый как пух и дешёвый как воздух. Но чудес не бывает, поэтому современные ограждающие конструкции представляют собой пирог из оболочек: одни ограничивают утечку воздуха, другие защищают от погодных условий, третьи держат нагрузку. Задача эффективно предотвращать передачу тепла через них решается созданием теплоизоляционного слоя.

В этом видео вы узнаете, какой утеплитель лучше:

Главный вопрос устройства такого барьера заключается в правильном выборе материала для него. Утеплитель должен удовлетворять требованиям технологий монтажа, строительным нормам, проектной стоимости и соответствующим показателям таблицы коэффициента теплопроводности теплоизоляционных материалов. В качестве строительных теплоизоляторов сейчас широко применяются:

  • пенополимеры с открытыми и закрытыми порами;
  • минеральные ваты из шлака, стекла или камня.

Перечисленные материалы производятся в большом разнообразии свойств и по различным технологиям, в качестве изделий или сырья для производства непосредственно на площадке. Это вызвано широким спектром требований при решении строительных задач, которые не ограничиваются вопросом о том, какая теплопроводность лучше. Основные качества, которыми должен обладать утеплитель, можно свести к следующему перечню:

  • низкая и неизменная в течение всего срока эксплуатации теплопроводность;
  • стойкость к заданным влажностным и температурным режимам;
  • нейтральность по отношению к изолируемым объектам;
  • устойчивость к температурным деформациям;
  • прогнозируемость жизненного цикла (утеплителя он не должен быть ниже, чем у изолируемого объекта);
  • технологичность для применения в конкретном случае.

Ориентиром для выбора утеплителя по его изоляционным свойствам и для определения его количества служат таблицы теплоизоляционных материалов.

Физика теплообмена

Явление теплообмена как способа передачи энергии способно произойти лишь в присутствии разницы температур. Существует три вида теплообмена в природе:

  • конвекция;
  • излучение;
  • теплопроводность.

Конвекция осуществляется за счёт перемещения тёплых и холодных потоков в жидких и газообразных средах. Например, комнатный воздух, нагретый от контакта с горячим радиатором, благодаря расширению, становится легче и поднимается в вверх, уступая место холодному. Такой процесс будет продолжаться непрерывно, пока существует разница температур в помещении. Наблюдаемый столб дыма из трубы - хорошая иллюстрация конвективного теплообмена.

Излучение - это способ распространения тепловой энергии в виде электромагнитных волн. Все тела вокруг нас являются источниками излучения, степень и интенсивность которого зависит от их температуры. Часть излучения от тел с высокой температурой можно видеть невооружённым глазом, некоторые тела настолько слабо испускают тепло, что его можно зарегистрировать только с помощью тепловизора.

Теплопроводность происходит за счёт передачи энергии между соседними твёрдыми частицами. Нагрев или охлаждение одного участка твёрдого тела вызовет распределение тепла внутри тела до выравнивания температуры в нём. Погруженные в кипяток деревянная чайная и металлическая ложки нагреются неодинаково. Это происходит потому, что различные материалы по-разному проводят тепло. Некоторые интенсивно, а некоторые настолько плохо, что могут служить в качестве тепловых барьеров.

Коэффициент лямбда для материалов

Способность материала проводить тепло определяется коэффициентом теплопроводности и обозначается греческой буквой лямбда. Значение коэффициента соответствует количеству тепла в Ваттах, проходящему через однородный образец площадью 1 м² и толщиной 1 м при разнице температур в 1 К за одну секунду.

Чем ниже меньше эта величина, тем качественней изолятор. Значения лямбды для конкретных материалов получают с помощью специализированных тестов, позволяющих осуществлять точный замер тепла, переданный образцом конкретного материала. Этот показатель является основным для теплоизоляторов и позволяет сравнить их характеристики с целью определения применимости для тех или иных задач. Таблица коэффициентов теплопроводности утеплителей, выраженной в Вт/(м²×К), выглядит так:

Очевидно, что современные утеплители обладают довольно внушительными показателями. Для сравнения: коэффициент теплопроводности железобетона и стекла (2,5 и 1, соответственно) в десятки раз превышает любой показатель, приведённый в таблице. Это объясняется тем, что в материалах, применяемых в качестве утеплителей, используются хорошие термоизоляционные свойства воздуха и других газов с большой молекулярной массой. Почти все без исключения искусственные и природные утеплители представляет собой открыто или закрыто пористые структуры.

Широкий разбег значений, приведённых в общей таблице, объясняется тем, что сравнительные характеристики теплоизоляционных материалов одного типа могут сильно отличаться из-за технологии изготовления и производителя. Точные значения лучше уточнять для конкретной торговой марки и артикула. Это обязательно нужно учитывать при выборе утеплителя.

Ученые независимой лаборатории Всероссийского научно-исследовательского института физико-технических и радиотехнических измерений (ВНИИФТРИ) провели испытания теплопроводности при различных температурах четырех самых популярных в строительстве утеплителей: модифицированного пенополиуретана PIR, полистирола (экструзионного XPS и вспененного EPS) и минераловатного утеплителя (МВ).

Цель испытаний - установить зависимость теплопроводности материалов от температуры в диапазоне от -190 до +80 С.

ВНИИФТРИ - один из ведущих метрологических институтов России, государственный научный центр Российской Федерации. Именно этот институт отвечает за единство измерений и является хранителем эталонов.

По результатам измерений ученые выявили следующие факты:

Факт 1: теплопроводность всех изученных материалов растет, когда повышается температура, и наоборот, падает, когда температура снижается.

Факт 2: лучшим сопротивлением теплопередаче обладает теплоизоляция PIR за счет структуры материала: закрытых ячеек, наполненных газом с крайне низкой теплопроводностью.

Факт 3: обнаружились отклонения показателей теплопроводности материалов от тех, что заявляются производителями. Минимальные отклонения у EPS, максимальные - у минеральной ваты.

Методика испытаний

Испытания проходили на установке для измерения теплопроводности «ТАУ-5» (фотография 1). Эта установка является эталонным средством второго разряда с допускаемой основной погрешностью измерений теплопроводности в 2%.

Установка реализует нестационарный метод нагретого круга и представляет собой резервуар с жидким азотом, в который погружаются исследуемые образцы с нагревателем - датчиком теплопроводности.

Фотография 1. Установка «ТАУ-5»

Из представленных материалов (EPS/XPS/PIR/МВ) подготавливалось по 2 измерительных образца в виде цилиндров диаметром 30 мм, и толщиной 15 мм (фотография 2). Между образцами устанавливался датчик-нагреватель. Таким образом фактические измерения теплопроводности проводились по поверхностям, находившимся в середине плиты.

Фотография 2. Внешний вид образцов

Фотография 3. Установка первой половины образца, датчик-нагреватель, установка датчика, установка второй половины образца.

Измерения и сравнение теплопроводности проводились в атмосфере воздуха при комнатной температуре 295 К (22С) и в атмосфере азота в диапазоне температур от 80 до 360 К (-193/87С) несколькими сериями: от 80 до 360К с шагом 5-10К и от 360 до 80К с аналогичным шагом. Измерения в каждой точке, при определенной температуре, производились в несколько этапов, до установления среднего квадратичного отклонения близким или равным нулю (рис. 1).

Рисунок 1. Результаты сходимости измерений по одной точке при температуре 300К/26С.

Общие результаты испытаний

Результаты испытаний показали, что теплопроводность всех проанализированных утеплителей возрастает с повышением температуры, см. рис. 2.

Рисунок 2. Теплопроводность ТИМ при в диапазоне температур -190/+80С.

Результаты испытаний по отдельным материалам

XPS и EPS

Результаты измерений образцов XPS и EPS (рис. 3, 4) показали, что значения теплопроводности на воздухе и в азоте в начале первой серии совпадали и только после нагрева до 330К (57C) в первой серии снизились на 2 и 2,5% соответственно. Далее последовала стабилизация, причем температурная зависимость теплопроводности имеет относительно гладкий характер.

Большой размах диапазона значений, а также вогнутость графика температурной зависимости говорят о наличии в порах легких газов с высокой теплопроводностью, замерзающих при температурах фазового перехода паров воды в лед.

Что примечательно, температурная зависимость теплопроводности EPS пересекает зависимости XPS (рисунок 2). При -80 о С она ниже, при размораживании газов – выше).

Рисунок 3. Теплопроводность XPS в диапазоне температур -190/+80С.

Рисунок 4. Теплопроводность EPS в диапазоне температур -190/+80С.

Минеральная вата

При измерении образцов минеральной ваты значения теплопроводности открытопористого материала в отличие от закрытопористых на воздухе и в азоте практически совпадали (рис. 5) даже после нагрева до 360К (87С) в первой азотной серии.

Причем температурная зависимость теплопроводности носит относительно гладкий характер, а некоторый разброс объясняется непрочностью и неоднородностью ваты. Большой размах диапазона значений теплопроводности, а также выпуклость температурной зависимости говорят о наличии в порах ваты одного газа - азота. Все остальные газы сорбировались в азот сразу после погружения.

Рисунок 5. Теплопроводность минеральной ваты в диапазоне температур -190/+80С.

Утеплитель PIR

Результаты измерений образцов PIR-изоляции показали, что температурная зависимость теплопроводности носит негладкий характер и имеет два минимума или точки перегиба при -33 и -13С (рис. 6).

Это говорит о наличии в порах материала не менее двух газов (пентан и СО2), которые конденсируются ниже этих температур, тем самым повышая теплопроводность за счет увеличения доли легких молекул в газовой фазе. Однако рост показателя незначителен и больше напоминает стабилизацию значения теплопроводности при понижении температуры.

Рисунок 6. Теплопроводность PIR-изоляции при в диапазоне температур -78/+42С.

Представленные материалы становятся более эффективными в зоне критических отрицательных температур (менее -15С): снижение коэффициента теплопроводности принимает характер стремительного падения.

Столь резкое снижение теплопроводности объясняется очень малым пятном контакта жидкой фазы тяжелых газов, образовавшейся в порах, с твердым веществом стенок. За счет этого изменяются доли легких молекул в газовой фазе и образуется вакуум, замещающий газовую фазу вспенивающего агента, но эти факторы не участвуют в передаче тепла. Как оказалось, вакуум надежно выполняет компенсаторную функцию.

Температура

Теплопроводность Вт/м*К

Реальные и заявленные показатели теплопроводности

Интересно, что в процессе исследования обнаружились отклонения показателей теплопроводности материалов от тех цифр, которые заявляют производители (рис. 7).

Минимальные и максимальные показатели для диапазона заявленных значений теплопроводности определялись для ТИМ той же плотности, что и измеряемые образцы. Анализ заявляемых показателей проведен на основе сведений из открытых источников в интернете.

Рисунок 7. Отклонения теплопроводностей строительных материалов от заявляемых при 25С.

Итоги

Все изученные в независимой лаборатории ВНИИФТРИ материалы показали устойчивый рост теплопроводности с ростом температуры. Каждый в своем пределе, обусловленном строением материала. Если для XPS рост составил от 0,011 до 0,044, для МВ - 0,015-0,051, то для PIR - 0,010-0,029.

Как видим, лучше всего себя зарекомендовала современная теплоизоляция из огнестойкого пенополиизоцианурата PIR, модифицированного пенополиуретана. Результаты российских независимых исследований подтверждают данные, полученные в других странах: PIR действительно утепляет лучше.

Можно исходя из нескольких основополагающих характеристик.

Основные характеристики теплоизоляционных материалов

Теплопроводность . Чем ниже теплопроводность, тем меньше требуется утеплительный слой, а значит, и ваши расходы на утепление сократятся.

Влагопроницаемость . Меньшая влагопроницаемость снижает негативное воздействие влаги на утеплитель при последующей эксплуатации.

Пожаробезопасность . Материал не должен поддерживать горение и выделять ядовитые пары, а иметь свойство к самозатуханию.

Экономичность . Утеплитель должен быть доступным по стоимости для широкого слоя потребителей.

Долговечность . Чем больше срок использования утеплителя, тем он дешевле обходится потребителю при эксплуатации и не требует частой замены или ремонта.

Экологичность . Материал для теплоизоляции должен быть экологически чистым, безопасным для здоровья человека и окружающей природы. Эта характеристика важна для жилых помещений.

Толщина материала . Чем тоньше утеплитель, тем меньше будет «съедаться» жилое пространство помещения.

Вес материала . Меньший вес утеплителя даст меньшее утяжеление утепляемой конструкции после монтажа.

Звукоизоляция . Чем выше звукоизоляция, тем лучше защита жилых помещений от шума со стороны улицы.

Простота монтажа . Момент достаточно важен для любителей делать ремонт в доме своими руками.

Сравнение характеристик популярных утеплителей

Пенопласт (пенополистирол)

Этот утеплитель самый популярный, благодаря легкости монтажу и небольшой стоимости.

Пенопласт изготавливается при помощи вспенивания полистирола, имеет очень низкую теплопроводность, устойчив к влажности, легко режется ножом и удобен во время монтажа. Благодаря низкой стоимости имеет большую востребованность для утепления различных помещений. Однако материал достаточно хрупкий, а также поддерживает горение, выделяя токсичные вещества в атмосферу. Пенопласт предпочтительнее использовать в нежилых помещениях.

Пеноплэкс (экструдированный пенополистирол)

Утеплитель не подвергается гниению и воздействию влаги, очень прочный и удобный в использовании – легко режется ножом. Низкое водопоглощение обеспечивает незначительные изменения теплопроводности материала в условиях высокой влажности, плиты имеют высокую сопротивляемость сжатию, не подвергаются разложению. Благодаря этому экструдированный пенополистирол можно использовать для утепления ленточного фундамента и отмостки. Пеноплекс пожаробезопасен, долговечен и прост в применении.

Базальтовая вата

Материал производится из базальтовых горных пород при расплавлении и раздуве с добавлением компонентов для получения волокнистой структуры материала с водоотталкивающими свойствами. При эксплуатации базальтовая вата не уплотняется, а значит, ее свойства не изменяются со временем. Материал пожаробезопасен и экологичен, имеет хорошие показатели звукоизоляции и теплоизоляции. Используется для внутреннего и наружного утепления. Во влажных помещениях требует дополнительной пароизоляции.

Минеральная вата

Минвата производится из природных материалов – горных пород, шлака, доломита с помощью специальной технологии. Минеральная имеет низкую теплопроводность, пожаробезопасна и абсолютно безопасна. Одним из недостатков утеплителя является низкая влагостойкость, что требует обустройства дополнительной влаго- пароизоляции при его использовании. Материал не рекомендуется использовать для утепления подвалов домов и фундаментов, а также во влажных помещениях - парилках, банях, предбанниках.

Пенофол, изолон (фольгированный теплоизолятор из полиэтилена)

Утеплитель состоит из нескольких слоев вспененного полиэтилена, имеющих различную толщину и пористую структуру. Материал часто имеет слой фольги для отражающего эффекта, выпускается в рулонах и в листах. Утеплитель имеет толщину в несколько миллиметров (в 10 раз тоньше обычных утеплителей), но отражает до 97% тепловой энергии, очень легкий, тонкий и удобный в работе материал. Используются для теплоизоляции и гидроизоляции помещений. Имеет длительный срок эксплуатации, не выделяет вредных веществ.

Первая из них – коэффициент теплопроводности , который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр - если речь идет об изоляции - должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

Преимущества и недостатки различной теплоизоляции

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Loading...Loading...