Подключение и работа реле (датчика) протока. Реле протока воды для насоса: характеристики, принцип действия, установка Подключение реле протока воды для вибрационного насоса

Нашел подходящую вещь для решения своей задачи. Задачи такие:

1) Чтобы работал полив огорода или была возможность помыть автомобиль (в этом случае не должна срабатывать "блокировка насоса" по НЕ НАБОРУ верхнего давления в течении определенного времени, если оно прописано в алгоритме работы)
2) Иметь таймер на отключение после закрытия протока - перекрытие крана, завоздушивание ХВ, засор и пр. (В случае с реле сухого хода, задавался вопрос - "А что если насос нагонит верхнее давление 2.2 вместо положенных 3.2 бар при попадании воздуха в магистраль и реле не увидев нижнее давление на отключение не отключит насос?" Поэтому нужен таймер на отключение насоса после обрывании потока)
3) Датчик протока дает возможность нагнетать давление в РБ. (РБ необходим от гидроударов и для запаса воды, а также для "активации" датчика протока, который запустит насос сразу либо по таймеру или нижнему давлению)
4) Стоить агрегат не должен слишком больших денег, так как производители не имеют огромного желания оказывать гарантийные ремонты, запчасти тоже должны иметь умеренную стоимость.
5) Устройство возможно перезапустить с кнопки или с вилки (розетки с выключателем) не бегая в подвал для перезапуска насоса при отключении света.
6) При завоздушивании ХВ датчик протока вырубает насос (в случае с поливом огорода сработает таймер после пропадания протока).

Судя по пунктам мне подходит UNIPUMP ТУРБИ-М1 думаю он может работать совместно с реле давления и вот какие варианты действия подразумеваются.

Подключаю провода: реле давления + турби м-1 + насос с РБ.
При первом запуске давление = 0 бар. Заливаю водичку в систему (насос, реле протока и пр.) и открываю кран для выпуска воздуха. Реле давления передает электричество турби м-1, а турби м-1 при первом пуске (при перезагрузке) передает питание на двигатель.

Если поливаю огород то насос работает постоянно (при не достижении верхнего давления не отключит питание реле давления, а датчик протока НЕ ОТКЛЮЧИТ электричество, так как есть проток). В случае когда все краны закрыты = нет протока, нагнетается давление в РБ, насос выключится разрывом цепи в случае верхнего порога от команды реле давления либо насос выключит датчик протока по таймеру, кто сработает раньше. Наверное будет лучше подобрать верхнее давление такое, чтобы раньше отключало питание реле давления, ну это пока мысли в слух.

Если отключило питание реле давления, то датчик протока тоже обезточился. Значит, при падении давления ниже нижнего предела , допустим у реле давления это будет 1.8 бар, оно подает питание к датчику протока. Датчик протока (по идее) при включении/перезапуску должен увидеть это давление и сработать (ПОДАТЬ НАПРЯЖЕНИЕ К НАСОСУ) ТОЛЬКО по достижении своего минимального давления 1.5 бар или по протоку.
Это в теории.
Далее. Понижается давление (при открытии крана) ниже 1.5 бар - включается насос по команде датчика протока и снова все идет по кругу.

Если отключают свет, то ПРИ НАЛИЧИИ необходимого давления в ХВ, реле не включает насос и датчик протока не включает насос, так как нет протока. А если отключили свет и я стравил давление в ХВ до нуля - захотел набрать водички, то запустить эту систему получится только перезагрузив датчик протока, но по сути, после включения света датчик протока должен включаться сам, (как и реле давления) - по факту это перезапуск и есть.
Если из скважины происходит подсос воздуха, но реле давления продолжает нагнетать давление до верхнего установленного предела, датчик протока вырубит питание насоса по таймеру . (Если нет протока и низкое давление, датчик протока вырубает насос через 30 сек.)
В принципе по теории все гладко получается. Если я что то упустил, то дополните меня.
Так как датчик протока работает от двух моментов: при достижении нижнего порога 1.5 бар или появлении протока, думаю наличие реле давления сократит частоту включения насоса, что бы не гонять насос при каждом открытии крана.

З. Ы. Прежде чем покупать вещь, приходится прогонять варианты работы и опробовать ее на основе теории или опыта людей.
Инфа по датчику протока.

Основной задачей любой системы водоснабжения является не только обеспечение водой потребителя, но и реализация ее бесперебойной работы в автоматическом режиме без поломок. Для этой цели предназначены повсеместно применяемые реле давления и сухого хода, поплавковые устройства для контроля уровня жидкости. Данные приборы помимо автоматизации работы системы обеспечивают защиту насоса от сухого хода и как следствие от его перегрева и выхода из строя. Реле протока воды для насоса менее известны и распространены, но также призваны автоматизировать работу водопроводной системы и защитить ее основное оборудование от выхода из строя.

Реле потока предназначено для отслеживания потока жидкости в системах холодного и горячего водоснабжения, отопления, очистных и охлаждающих установках.

Его основное назначение — защита электронасосов, двигателей и других устройств от работы в условиях отсутствия или малого количества воды в системе, приводящего к перегреву и выходу из строя оборудования.

Рис.1 Внешний вид реле протока

Реле рассчитаны на установку в трубопровод и позволяет автоматизировать процесс управления подачи жидкостей в системах бытового и промышленного назначения.

Датчик протока воды для насоса находит применение в следующих случаях.

  • Если в системе отсутствует гидроаккумулятор. Это не позволяет установить датчик давления, предназначенный для работы в паре с расширительным баком, для защиты электронасоса лучше использовать датчик потока.
  • В системах с низким давлением. Минимальный порог срабатывания типовых моделей датчиков давления составляет 1 бар., то есть при более низком давлении в системе насос всегда будет отключен. Проточные устройства имеют более широкий спектр действия, который может быть расширен с помощью регулировок. Это позволяет использовать устройства для защиты оборудования в системах с пониженным давлением.

Для настройки на работу с широким диапазоном давлений в некоторых лепестковых моделях предусмотрена комплектация лепестками разной площади, оказывающих различное сопротивление водному потоку. Иногда на лопасть наносятся насечки с указанием длины. При установке она обрезается для получения необходимого давления срабатывания согласно таблице с различным сочетанием длины лепестка и внутреннего диаметра трубопровода.


Рис 2. Проточное реле с регулируемой длиной лепестка
  • Подавляющее большинство проточных реле рассчитано на работу в отопительных системах, поэтому температура их рабочего тела может составлять 100 С и более.

Устройство и принцип работы

Принцип работы реле протока основан на механическом воздействии потока воды в трубопроводе на датчик, управляющий электронной схемой включения — отключения электронасоса. Реле имеют разный принцип работы и в зависимости от конструктивного исполнения датчика подразделяются на несколько видов.

Лепестковые реле

Одни из наиболее распространенных видов, основными элементами являются лепестковый датчик с магнитом, располагающийся в потоке воды и геркон, помещенный в корпус устройства и надежно изолированный.


Рис.3 Лепестковое механическое реле

При прохождении потока воды по трубопроводу вертикально расположенный лепестковый датчик поворачивается вдоль своей оси и отклоняется от вертикального положения, приближая встроенный магнит к геркону. Его контакты внутри баллона замыкаются и через симистор (сдвоенный симметричный тиристор) происходит подключение насоса к источнику электроэнергии.

При отсутствии воды в трубопроводе лепесток возвращается в первоначальное положение, отдаляя магнит от геркона и тем самым размыкая его контакты.

Это приводит к прекращению подачи напряжения питания на насос через семистор, в результате чего тот отключается.


Рис.4 Внешний вид реле с герконом и семистором

Роторные реле и датчики проточного типа

Роторные датчики в основном используются для измерения и контроля потока жидкости. Конструктивно выполнены в виде лопастного колеса, вращающегося в потоке жидкости, его скорость вращения регистрируется сенсорными датчиками. Электронная схема позволяет осуществлять аналоговое, частотное или дискретное управление работой оборудования.


Рис.5 Роторные датчики

Поршневые устройства

Поршень размещается в седле клапана и под воздействием напора воды перемещается в вертикальном направлении на высоту, пропорциональную силе потока. Постоянный магнит, установленный на поршне, приближается к герконовому переключателю и в нем происходит замыкание контактов. Поршневые устройства могут устанавливаться на горизонтальные и вертикальные трубопроводы благодаря встроенной возвратной пружине, возвращающей поршень в исходное положение при отсутствии потока.


Рис. 6 Принцип работы и внешний вид поршневых реле

Реле протока воды в отличие от реле давления и сухого хода, поплавковых выключателей, не столь широко применяются для автоматического управления водными электронасосами в системах бытового водоснабжения. Связано это с тем, что они не могут самостоятельно работать в системе водозабора — для их включения необходимо создание потока воды и включение насоса другими устройствами. Реле рассчитаны на отключение электронасосов и часто встраивается в электронные блоки управления водоснабжением совместно с другой автоматикой.

Работа современных бытовых и промышленных приборов во многом зависит от правильной и бесперебойной работы электронных устройств. Во многом такое положение дел устраивает, однако, как только происходит сбой, нормальный ритм жизни превращается в сплошную нервотрепку. А ведь в принципе ничего страшного не происходит просто один из компонентов выходит из строя.

Именно к таким компонентам современных бытовых приборов и относится датчик протока воды. Нехитрое устройство, которым снабжены газовые водогрейные котлы, системы автономного водоснабжения, системы полива, насосы скважин.

Как и у всех электронных компонентов, у датчика протока води тоже существуют принципы, по которым он работает. В принципе здесь все просто, весь смысл его работы заключается в том, чтобы сигнализировать о том, есть ли движение воды или нет. Датчик устанавливается, к примеру, в трубу. При закрытом кране, движения воды нет, а как только кран открывается, начинается движение воды и срабатывает датчик, контакты замыкаются и сигнал уходит на плату управления.

Правда, необходимо сразу указать, что предварительно датчик настраивается на определённый порог чувствительности – это когда движение воды должно достигнуть определённой отметки, к примеру, 1,7 литра в минуту. Вот тогда датчик и включится, при этом будет продолжать работать до тех пор, пока скорость подачи воды не уменьшится ниже отметки, и тогда контакты разомкнутся, и плата управления перестанет получать сигнал.

Области применения

В бытовых условиях датчики протока воды нашли своё применение в основном в приборах, где требуется постоянный контроль за системами жизнеобеспечения дома и соблюдением определённого режима их функционирования. Контролируя подачу воды, датчики движения позволяют существенно снизить затраты на содержание жилища, делают жизнь намного комфортнее и безопаснее.

Для газового котла


Основным местом применения датчика протока воды в современных домах стали газовые котлы. Оснащенные такими датчиками современные газовые котлы совмещают в себе функции водогрейного аппарата и котла обогрева.

Датчик протока воды установленный на трубопроводе подачи водопроводной воды реагирует на начало движения воды при открытии крана горячей воды.

Датчик посылает сигнал на плату управления котла, и электроника выключает циркуляционный насос отопления, гасит газовые форсунки отопления, перекрывает клапан циркуляции воды в системе отопления. А дальше плата включает форсунки подогрева проточной воды и в теплообменнике начинается процесс подогрева воды. При закрытии крана, датчик фиксирует остановку движения воды, о чем сигнализирует на плату управления.

Для насоса


Многие современные домовладения оснащаются системами автономного водоснабжения. Подобные системы позволяют иметь в частном доме уровень комфорта сопоставимый с квартирами, но при этом не зависеть от централизованного водопровода.

Система, состоящая из насоса, бака для воды и системы управления позволяет обслуживать все необходимые для комфортного проживания системы – стиральные машины-автоматы, посудомоечные машины, пользоваться горячей водой и туалетом.

Роль датчика протока воды заключается в том, что когда включается любой из подсоединённых к системе водоснабжения приборов или начинается отбор воды, датчик включает насос и автоматически начинается подача воды. При этом неважно начинается ли стирка, открывается ли кран на кухне или спускается бачок унитаза.

Еще одним вариантом использования датчиков протока воды являются системы автоматического полива. Здесь, кроме функции открытия датчик расхода контролирует количество воды, используемое для полива. Такая функция необходима для контроля дозированного полива и избежания переувлажнения почвы. Датчик установленный на центральном трубопроводе подает информацию на пульт управления системой.

Виды

Сегодня наибольшее применение нашли датчики протока воды двух видов ― датчик Холла и реле герконовое.

Датчик проточной воды, основанный, на принципе работы датчика Холла (его называют еще расходомер) представляет собой небольшую турбину, на которую насажен магнит. При вращении турбины, магнит создаёт магнитное поле и как турбина на гидроэлектростанции генерирует небольшие электрические импульсы, которые поступают на плату управления котла. Скорость вращения турбины зависит от скорости подачи воды, чем больше поток, тем четче импульсы. Таким образом, благодаря датчику Холла возможно не только сигнализировать о протоке воды, но и о скорости подачи воды.

Герконовый датчик протока воды представляет собой датчик, основанный на использовании принципов магнита. Принципиально этот датчик выглядит так – внутри камеры из композитного материала находится магнитный поплавок, при увеличении давления воды, поплавок перемещается по камере и воздействует на геркон.

Геркон, а это не что иное, как две магнитные пластины в камере без воздуха, под действием магнитного поля поплавка размыкается, и плата управления переводит работу котла в режим горячего водоснабжения.


Установка

Учитывая то, что большинство датчиков протока воды конструктивно входят в состав приборов, установка их требуется только в случае замены при выходе из строя. Однако, встречаются ситуации, когда датчик протока воды необходимо устанавливать отдельно, например, когда возникает необходимость увеличить напор подачи воды.

Ведь нередко случаются ситуации, когда в системе центрального водопровода недостаточное давление, и для включения газового котла в режим горячего водоснабжения необходимо создать хороший напор. В таком случае устанавливается дополнительный циркуляционный насос, оборудованный датчиком протока воды.

В данном случае датчик устанавливается после насоса, таким образом, при начале движения воды датчик включает насос, и давление воды повышается.

Обзор моделей и цены

Датчик протока воды для насоса Grundfos UPA 120

Основное применение – автоматическое управление насосом системы водоснабжения. Датчик предназначен для обеспечения водоснабжения индивидуального дома, квартиры, оснащенной индивидуальной системой водоснабжения. Включение автоматики датчика происходит при устойчивом потоке жидкости в диапазоне 90-120 литров в час.

Основное предназначение – защита насоса от холостого хода. Датчик используется с насосами повышения давления GRUNDFOS серии UPA. Данные агрегаты имеют небольшие линейные размеры, что позволяет производить монтаж непосредственно в линию водопровода.

Использование датчика позволяет работать насосу в нескольких режимах работы, позволяющих как автоматическое включение, так и включение при необходимости. Автоматика датчика отключает насос в случае повышения давления в водопроводе до нормального показателя.

Характеристики:

  • потребляемая мощность – до 2,2 кВт;
  • степень защиты – IP 65;
  • производитель – GRUNDFOS;
  • страна производитель – Румыния, Китай;

Цена – 30 долларов.

Датчик протока воды серии GENYO – LOWARA GENYO 8A

Продукция компании специализирующейся на производстве различных электронных устройств для систем управления. Модель предназначена для управления насосом бытовой системы водоснабжения на основе фактического расхода воды. Основной особенностью датчика является контроль за давления в водопроводе в процессе работы. Датчик LOWARA GENYO 8A предназначен для пуска насоса при достижении расхода воды в 1,5- 1,6 литра в минуту.

Характеристики:

  • запуск насоса производится при расходе воды 1,5 литра в минуту;
  • рабочее напряжение датчика – 220-240 В;
  • частота потребляемого тока – 50-60 Гц;
  • максимальный потребляемый ток – 8А;
  • потребляемая мощность – до 2,4 кВт;
  • диапазон рабочих температур – 5-60 градусов Цельсия;
  • степень защиты – IP 65;
  • производитель – LOWARA;
  • страна производитель – Польша;

Цена – 32 доллара.

Предназначен для установки в газовых двухконтурных котлах торговой марки Immergas. Совместим с моделями: Mini 24 3 Е, Victrix 26, Major Eolo 24 4E | 28 4E. Датчик протока на горячее водоснабжение предназначен для установки в газовых котлах торговой марки Immergas дымоходных и турбированных версий. Датчик протока выполнен в пластмассовом корпусе с резьбовым подключением. Датчик Холла 1.028570 позволяет получать на выходе из контура горячего водоснабжения воду со стабильной температуры,

Цена 41 доллар.

Эффективная работа насосного оборудования – это залог бесперебойной подачи воды и функционирования системы отопления в частном доме. Если вы хотите изо дня в день пользоваться благами цивилизации, то должны приложить все усилия, чтобы правильно наладить .

Решение указанной проблемы включает широкий спектр работ, главная из них – монтаж дополнительной оснастки, которая поможет четко контролировать возможные сбои в системе и предотвратит выход насоса из строя.

Наиболее востребованными и полезными в быту оказываются такие вспомогательные приборы, как: термодатчик, а также датчик протока воды. Именно о свойствах и эксплуатационных особенностях последнего устройства пойдет речь в этой статье.

1 Назначение и польза

В быту периодически происходит аварийное включение насоса без воды, что считается крайне опасным, ведь это может стать причиной поломки оборудования. Именуемый в народе «сухой ход» приводит к перегреву двигателя и деформации деталей.

Подобные негативные изменения возникают потому, что вода в системе выполняет смазывающую и охлаждающую функцию. Функционирование в режиме «сухого хода» даже непродолжительное время отрицательно сказывается на оборудовании, будь то циркуляционный или . Чтобы избежать подобных проблем, насосная станция оборудуется автоматикой – датчиком протока воды. Он предотвратит негативные изменения в системе и позволит избежать затрат на ремонт насоса.

Датчик протока воды представляет собой устройство для управления насосной станцией в . Кроме того, указанный автоматический прибор служит для повышения давления и защиты насоса, который используется в отопительных системах.

Принцип действия датчика заключается в том, что он контролирует мощность потока жидкости и самостоятельно включает или отключает насосную станцию при появлении и прохождении потока воды через нее. Таким образом, удается предотвратить возможный «сухой ход», ведь погружной или циркуляционный насос приводит в действие систему и поднимают давление внутри нее только тогда, когда это требуется.

Монтаж датчика протока воды влечет за собой ряд положительных моментов в эксплуатации насосной станции:

  • экономия затрат на электроэнергию;
  • снижение риска поломки оборудования;
  • увеличения срока службы насоса.

1.1 Конструкция и принцип работы

Как уже стало понятно, встроенный датчик протока воды используется в системах циркуляции отопления и водоснабжения частных домов. Его работа заключается в том, чтобы при отсутствии потока жидкости, автоматчики остановить насосную станцию и не допустить «сухого хода», а при появлении воды – привести оборудование в действие. Подобные рабочие свойства датчик получил благодаря своей конструкции.

Устройство состоит из клапана («лепестка»), который находится в проточной части, и герконового переключателя. При возникновении давления воды лепестковый клапан начинает перемещаться, сдавливая пружину. Одновременно с тем во взаимодействие вступает магнит на «лепестке» и герконовое реле.

В результате, происходит замыкание контактов, что приводит в действие погружной или циркуляционный насос. Когда в системе нет воды и соответствующего давления, пружина клапана разжимается, передвигая магнит в исходное положение – это становится причиной размыкания контактов и остановки оборудования.

Датчик протока воды для циркуляционного или погружного насоса легко монтировать в имеющую систему, нужно только правильно подобрать устройство, уделив должное внимание ключевым параметрам.

1.2 Основные характеристики

К покупке датчика протока воды для следует подходить обстоятельно. Рекомендуем сделать акцент на следующих характеристиках прибора:

  • материал корпуса и рабочих составляющих;
  • рабочее давление;
  • диапазон температуры теплоносителя;
  • условия эксплуатации и класс защиты;
  • диаметр резьбы.

Чтобы понять, какое влияние оказывает каждый из перечисленных факторов на эксплуатационные особенности устройства, рассмотрим их поэтапно. Материал корпуса и рабочих составляющих влияют на надежность и долговечность датчика, который устанавливается на насос . Желательно, чтобы в основе прибора лежали металлы: нержавеющая сталь, алюминий или латунь.

Указанные материалы способны защитить рабочие элементы от мощного потока воды и гидравлического удара. Обязательно изучите уровень рабочего давления, при котором способен функционировать датчик. Для каждого циркуляционного насоса это значение будет индивидуальным, поэтому нужно просчитать подходящий параметр заранее.

Существуют приборы, которые обеспечивают два уровня управления насосом: по нижнему пределу давления системы для ее включения и по верхнему пределу давления в случае прекращения или недопустимо малого уровня потока воды для выключения насосной станции.

Датчик с возможностью подобного программирования считается оптимальным. Нельзя при выборе оснастки для контроля потока воды пренебрегать таким параметром как диапазон температуры теплоносителя.

Условия использования приборов могут значительно отличаться. Одно дело, если приходится монтировать датчик в систему отопления, где температуры могут достигать 110°С и совсем другое, когда насос используется для включения и подачи холодной воды.

В последнем случае можно подобрать устройство, рассчитанное на диапазон температуры 60-80°С. Чтобы насос и приобретенный датчик как можно дольше сохраняли работоспособность, обратите внимание, при каких условиях должно функционировать оборудование.

В инструкции к устройству обязательно указывают уровень температуры окружающей среды и класс защиты. Последний критерий определяет нагрузки, которые способен выдержать датчик, установленный в насос.

Для произведения правильного и точного монтажа придется обратить внимание не только на допустимые температуры работы устройства, но и на диаметр соединительной резьбы. Только при правильной и качественной состыковке элементов можно добиться эффективного функционирования датчика после его предварительной установки и включения.

1.3 Об устройстве и характеристиках (видео)


2 Регулировка и подключение датчика

Датчик протока, который используется для контроля уровня воды и давления в системе, сразу после покупки следует отрегулировать. Процесс происходит следующим образом: устройство поставляется с разомкнутыми контактами и затянутым калибровочным винтом.

После включения насоса и достижения оптимального уровня воды, ламель смещается в направлении потока жидкости, что и приводит к замыканию контактов. Если ламель не начала двигаться, то это значит, что данного уровня расхода воды не достаточно. В случае, когда устройство не реагирует, нужно установить другое значение и проделать операцию сначала.

Существует ряд правил, которые облегчат монтаж датчика протока, главное из них – установка прибора должна происходить на горизонтальном трубопроводе, независимо от того вода какой температуры движется внутри. При этом нужно следить, чтобы ламель располагалась вертикально.

Следует тщательно измерять расстояние между трубой и устройством – минимальное допустимое значение составляет 55 мм. С помощью резьбовой муфты датчик соединяют со сливным трубопроводом, независимо от уровня воды, находящего внутри.

Прибор должен быть ориентирован так, чтобы стрелки на его корпусе соответствовали направлению потока воды в системе. В случае высокого уровня загрязнения теплоносителя перед датчиком монтируют .

В течение всего периода его эксплуатации. Установка реле протока в системе холодоснабжения обязательна, поскольку его основная функция - защита чиллера от нештатной ситуации: чрезвычайно малом либо при полном отсутствии протока жидкости через испаритель. Это возможно в системе лишь только в одном случае - при неработающем компрессоре холодильной машины.

Реле протока - датчик (микровыключатель, реле перепада давлений и т.п.), сигнализирующий контроллеру чиллера о том, что в системе циркуляции теплоносителя есть физический проток жидкости через испаритель чиллера, причем величина расхода через испаритель соответствует номинальному расчетному значению на выбранные рабочие параметры чиллера в системе холодоснабжения.

На практике находят применение реле протока различных типов: механические и дифференциальные реле, датчики перепада давлений и др. Назначение устройств одно - сигнализировать контроллеру чиллера о нормальном протоке жидкости через испаритель. Этим обусловлено место установки реле протока - на трубопроводных магистралях циркуляционного контура вблизи испарителя, как показано на Рис.7.

Наиболее целесообразно устанавливать реле протока на трубопроводной магистрали на выходе из испарителя. Выбирается прямолинейный участок трубы длиной не менее 10 калибров и по центру этого участка устанавливается реле протока. Не допускается установка реле протока вблизи гибов трубы, запорных клапанов или вентилей, регулирующей арматуры.

Корпус реле протока монтируется в вертикальном положении, причем направление стрелки на корпусе реле протока должно совпадать с направлением потока теплоносителя. При установке реле протока необходимо обеспечить защиту контактной группы реле от попадания в корпус грязи и влаги. Допускается установка механического реле протока на прямолинейных вертикальных участках труб, но только при условии направления движения теплоносителя снизу - вверх.

Наиболее простым и дешевым реле протока являются механические реле, принцип работы которых заключается в замыкании контактов микровыключателя при повороте чувствительной пластины («пера») находящейся в потоке движущейся жидкости. Длина пластины выбирается в зависимости от диаметра магистрали, в который вставляется реле протока.

Выбор длины пластины является ответственным моментом при установке реле протока, поскольку предопределяет его чувствительность. Так, при коротких длинах пластины контакты реле протока, установленного в трубопроводе большого диаметра, не замкнутся даже при нормальных величинах расхода, как показано на Рис.8.

При больших диаметрах трубопроводов рекомендуется подкладывать под чувствительную пластину несколько пластин меньшей длины (своеобразная «рессора»), в противном случае возможен быстрый выход из строя реле вследствие поломки пластины в месте заделки. На Рис.9 показаны типичные практические ошибки при инсталляции механических реле протока:

В первом случае при установке реле протока «забыли» установить пластину; во втором случае длинная пластина «цепляется» за трубу при ее повороте. В третьем случае длина пластина не соответствует диаметру трубопровода, поэтому пластина при монтаже реле протока установилась в каком-то произвольном положении; в четвертом случае стрелка на корпусе реле протока не соответствует направлению потока в магистрали.

Замыкание контактов реле протока при достижении требуемой расчетной величины расхода жидкости в магистрали регулируется винтом в корпусе реле при настройке гидравлического контура во время проведения пусконаладочных работ (см. Рис.10). Если по какой то причине расход в магистрали, считай в испарителе, станет меньше (G„2

В чиллерах, как правило, предусмотрены две последовательно скоммутированные ступени защиты по отсутствию или несоответствию расчетному значению расхода жидкости через испаритель. На Рис.11, в качестве примера, представлен фрагмент электрической DAIKIN с одновинтовым компрессором.

Первая ступень представляет собой «сухие» контакты насоса (S9L), которые замыкаются при подаче силового электропитания на насосную группу циркуляционного контура. Сигнал о включении насосной группы поступает на контроллер, но этого недостаточно для подтверждения нормального расхода жидкости через испаритель чиллера. Для этого служит реле протока, замыкание контактов (S8L) которого указывает на то, что расход через испаритель достиг требуемой величины. Только после этого начинается обратный отсчет таймера запуска компрессора чиллера и после его обнуления происходит собственно запуск компрессора.

Если, по какой то причине, расход жидкости через испаритель уменьшился или вообще прекратился, происходит размыкание цепочки защит и компрессор чиллера аварийно останавливается. Современные контроллеры чиллеров фиксируют аварию, таким образом, можно достаточно просто выявить причину аварийной остановки (реле протока).

При необходимости цепочка защит (Рис.11) по протоку жидкости через теплообменные аппараты чиллера может быть расширена. Так, при с водяным охлаждением конденсатора в эту цепочку последовательно включают «сухие» контакты насосной группы и реле протока по стороне .

При инсталляции оборудования холодильной станции необходимо учитывать также особенности электроподключения чиллера и насосной группы. Силовое электропитание рекомендуется выполнять раздельно: не допускается подключение насосной группы от чиллера. При пуске холодильной станции первым всегда производится включение насосной группы, затем чиллера.

Номинальные параметры чиллера (холодопроизводительность, потребляемая мощность и расход через испаритель) приводятся в технических данных при температуре окружающей среды +35°C; теплоносителе циркуляционного контура - вода; температуре воды на выходе из испарителя + 7°C; воды на входе/выходе из испарителя 5K.

Из условий оптимальной работы теплообменного аппарата - испарителя (теплообменных и гидравлических характеристик агрегата) допускается рабочая разность температур в узком диапазоне от 3 до 8 K. В соответствии с вышеизложенным различают:

  • Минимальный расход теплоносителя в циркуляционной системе, соответствующий максимальной разности температур на испарителе - 8К. Эта величина является нижним порогом по расходу в системе циркуляции испарителя, ниже которого изготовителем не рекомендуется работа аппарата - при столь малых расходах возможно замораживание каналов испарителя.
  • Номинальный расход теплоносителя в циркуляционной системе, соответствующий стандартной разности температур на испарителе - 5К, теплоноситель - вода. Эта величина характеризует устойчивую работу чиллера.
  • Максимальный расход теплоносителя в циркуляционной системе, соответствующий минимальной разности температур на испарителе - 3К. Эта величина является верхним пределам по расходу в системе циркуляции испарителя. Дальнейшее увеличение расхода нецелесообразно вследствие ухудшения характеристик испарителя из-за возрастания его гидравлического сопротивления.
  • Расчетный расход теплоносителя через испаритель чиллера, соответствующий выбранной при проектировании системы холодоснабжения разности температур на испарителе, выбранных параметрах чиллера при подборе оборудования, выбранном типе теплоносителя циркуляционного контура. Для стандартных условиях расчетная величина расхода соответствует номинальной.

/strong
Loading...Loading...