Выпрямительные диоды и схемы с диодами. Характеристики и принцип действия выпрямительных диодов. Полупроводниковые диоды и их характеристики

Выпрямитель электрического тока - механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Диодный мост - электронная схема, предназначенная для преобразования ("выпрямления") переменного тока в пульсирующий постоянный. Такое выпрямление называется двухполупериодным.

Выделим два варианта включения мостовых схем однофазную и трехфазную.

Однофазная мостовая схема:

На вход схемы подается переменное напряжение (для простоты будем рассматривать синусоидальное), в каждый из полупериодов ток проходит через два диода, два других диода закрыты (рис.1 а, б).

В результате такого преобразования на выходе мостовой схемы получается пульсирующее напряжение вдвое большее частоты напряжения на входе (рис.2 а, б, с)


Рис. 2. а) исходное напряжение (напряжение на входе), б) однополупериодное выпрямление, с) двухполупериодное выпрямление

Трехфазная мостовая схема:

В схеме трехфазного выпрямительного моста в результате получается напряжение на выходе с меньшими пульсациями, чем в однофазном выпрямителе (рис.3).


Рис. 3. Напряжение на выходе трехфазного выпрямителя

Для выпрямления трехфазных напряжений так же широко используются диодные выпрямители. Очень распространены схемы выпрямителей на полумостовых диодных выпрямителях рис. 4.


Рис. 4. Трехфазная схема выпрямителя на полумостах

Как правило, для сглаживания пульсирующего напряжения на выходе выпрямителя применяется фильтр в виде конденсатора или дросселя, к тому же для стабилизации выходного напряжения устанавливается стабилитрон рис. 5.


Рис. 5. Схема диодного выпрямителя с фильтром

Конструкция, преимущества


Рис. 6. Диодный мост на дискретных элементах

Конструкция диодных мостов может быть выполнена из отдельных диодов, или в виде монолитной конструкции (диодной сборки). Монолитная конструкция, как правило, предпочтительней - она дешевле и меньше по объему. Диоды в ней подобраны на заводе изготовителе и параметры максимально аналогичны друг другу, в отличие от отдельных диодов, где параметры могут отличаться друг от друга, к тому же в рабочем состоянии диоды в диодной сборке работают в одинаковом тепловом режиме, что уменьшает вероятность выхода из строя элемента. Еще одним преимуществом диодной сборки является ее простота монтирования на плате. Основным недостатком монолитной конструкции является не возможность замены одного диода, вышедшего из строя другим, в этом случае необходимо менять всю сборку, но происходит это крайне редко, если рабочие режимы диодного моста подобраны правильно.


Рис. 7. Диодная сборка

Области применения

Область применения выпрямительных мостов обширна, например:

  • приборы освещения (люминесцентные лампы, ЭПРА, модули солнечных батарей);
  • счетчики электроэнергии;
  • блоки питания и управления бытовой техники (телевизоров, миксеров, стиральных машин, пылесосов, set-top-box, компьютеров, холодильников, электроинструмента и др.), зарядные устройства мобильных телефонов и ноутбуков, AC/DC-DC/DC преобразователи;
  • промышленное (блоки питания, зарядные устройства, блоки управления электродвигателями, регуляторы мощности и др.), автомобильные выпрямители.

Diotec в электронике

Рассмотрим области применения выпрямительных диодов Diotec.

Компания Diotec Semiconductor AG (Diotec) - была образована в 1973 году в городе Хайтерсхайм (Германия). На сегодняшний день компания является ведущим производителем стандартных и силовых полупроводниковых диодов и выпрямителей, вся продукция выполнена на новейшем оборудовании с высоким уровнем качества по безсвинцовой технологии. Благодаря применению собственной уникальной технологии Plasma EPOS не имеющей аналогов в мире призванной обеспечить не только высокое качество производимой продукции, но и полностью исключить применение агрессивных кислот в процессе производства и свести к минимуму вредное влияние на окружающую среду, компания заняла одно из лидирующих мест на рынке электронных компонентов.

Как известно сердцем полупроводникового элемента является кремниевый кристалл. В отличие от многих других производителей, которые приобретают кристаллы у сторонних компаний, фирма Diotec владеет собственной полной технологической цепочкой полупроводникового производства - от создания кристаллов до сборки (корпусирования), тестирования и упаковки.

Diotec для приборов освещения

Одним из самых распространенных элементов для применения в устройствах осветительной техники является выпрямитель серии 1N4007, рассчитанный на ток до 1 А и напряжение до 1000 В.


Рис. 8. Выпрямители серии 1N4007 в сравнении с MS500 на печатной плате

Этот диод занял достойную нишу на рынке светотехнических устройств, но прогресс не стоит на месте и многие компании устремились найти рентабельную замену 1N4007 в виде эквивалентного устройства для поверхностного монтажа. Компания Diotec предложила свое решение в виде выпрямительного моста серии MS (рис.8). Устройство MS500 рассчитанное на рабочее напряжение до 1000 В на сегодняшний день наиболее популярное для применения в осветительных приборах. Диодный мост MS500 имеет выводы с шагом 2,5 мм наибольшим образом соответствует промышленным стандартам, площадь занимаемая мостом на печатной плате уменьшена со 140 мм 2 до 30 мм 2 , высота составляет 1,6 мм. Таким образом, экономится до 80% площади на плате и до 90% веса электронных компонентов, что влияет на транспортные расходы при перевозке элементов. Такие конструктивные особенности моста обеспечивают гибкость при изготовлении устройств и экономят средства. Кроме того, все четыре кристалла диодного моста устанавливаются одновременно (используется технология QuattroChip), что позволяет улучшить "выравнивание" диодного моста, повысить теплостойкость, а так же снизить количество выходов из строя, вызванных неравномерностью параметров диодов (при дискретной установке) и скачками входного тока.


Рис. 9. Внешний вид миниатюрной люминесцентной лампы и схемы балласта

Большинство конструкций балластных устройств потребляет небольшой ток. Поэтому требования к номинальным параметрам по току выпрямителей не очень высоки. Основной проблемой для осветительных устройств является высокая температура окружающего воздуха.


Рис. 10. Характеристика диодного моста B250S2A в режиме повышенной температуры

Высокая температура вызывает появление проблем, связанных со снижением номинальных параметров по току, и во многих случаях инженера избегают применения мостовых выпрямителей предназначенных для поверхностного монтажа (SMD), в балластных схемах мощных осветительных приборов. Они предпочитают использовать четыре дискретных элемента для поверхностного монтажа (например, серии S1M) или компоненты с осевым расположением. Серия диодных мостов B250S2A решает данную проблему. Этот мостовой выпрямитель рассчитан на номинальный ток до 2,3 А и способен пропускать ток 0,7 А при температуре 125 °С. Кроме того, он способен обеспечивает прямое падение напряжения V F = 0,95 В при токе 2 А, что на 15-20% лучше, чем у мостовых выпрямителей других производителей. При изготовлении диодных мостов серии BxxxS2A так же был применена технология QuattroChip, позволяющая повысить устойчивость вольтамперной характеристики мостового выпрямителя к выбросам.

В осветительной технике зачастую требуются выпрямители, рассчитанные на работу с напряжениями до 2000 В. Такие выпрямители применяются в некоторых типах ламп, где необходимо высокое напряжение для поджига разряда. Применяемые в промышленности технологии пассивации диодных переходов, для изготовления элементов в корпусах, предназначенных для поверхностного монтажа, представляют определенную трудность.


Рис. 11. Общий вид ЭПРА

Запатентованная компанией Diotec система Plasma EPOS позволяет применять технологии пассивации подложки на напряжения до 2000 В. Диодные переходы, полученные с помощью этих процессов, могут монтироваться в корпуса MELF или плоские корпуса для поверхностного монтажа (SMD). Такой технологический процесс привел к появлению диодных выпрямителей серии SM513…SM2000 в корпусах MELF рассчитанных на рабочий ток до 1 А и напряжение 1300-2000 В.


Рис. 12. Общий вид миниатюрной люминесцентной лампы

Здесь же стоит отметить одни из последних выпущенных компанией Diotec в серийное производство выпрямителей серии S1T…S1Y, которые являются логическим продолжением промышленного стандарта серии S1 рассчитанных на напряжение до 2000 В и ток до 1 А, выпрямители этой серии выпускаются в корпусе SMA. А так же версии S2x и S3x рассчитанные на токи до 2 и 3 А в корпусах SMB и SMC соответственно.


Рис. 13. Серия высоковольтных выпрямителей в SMD исполнении

В российской промышленности в настоящее время многие производители светотехнического оборудования активно применяют диодные мосты конкурирующих производителей для поверхностного монтажа серии DB10xS рассчитанных на рабочий ток до 1 А и напряжение до 1000 В. Компания Diotec выпускает аналогичные диодные мосты серии BxxxS, преимуществом которых является сохранение номинальных параметров от температуры, благодаря применению передовой технологии изготовления элементов и тщательному контролю качества, ударный прямой ток достигает 40 А, против 30 А у конкурентов, к тому же корпус диодных мостов серии BxxxS SO-DIL (SMD) имеет меньшие габариты аналогичных элементов других производителей.

Рассмотрим одну из интересных схем применения диодного моста в электронном пускорегулирующем аппарате (ЭПРА) рис.14.


Рис. 14. ЭПРА на базе UBA2021, с входной цепью на B380C1500A

Основой схемы ЭПРА является 630-вольтовая микросхема UBA2021 предназначенная для управления и контроля люминесцентной лампой. Входная цепь выполнена на диодном мосту серии B380C1500A рассчитанное на рабочий ток до 2,3 А и напряжение до 800 В.

Для управления люминесцентными лампами можно использовать микросхемы серии UBA2014, UBA2021, UBA2024.

Еще одним из применений диодных мостов являются, например бытовые регуляторы освещения для ламп накаливания.

Рассмотрим несколько простых схем регуляторов.


Рис. 15. Регулятор освещения лампы накаливания

Схема регулятора на рис.15 позволяет выполнять две функции: автоматически поддерживать заданный уровень освещенности вне зависимости от изменения уровня внешней освещенности и плавно регулировать задаваемый уровень освещенности.

При монтаже устройства необходимо учесть, что бы светочувствительный элемент (фоторезистор) располагался таким образом, что бы свет от лампы накаливания напрямую не попадал на рабочую площадку фоторезистора.

При необходимости данный регулятор освещенности может быть преобразован в регулятор других параметров, например в терморегулятор.

На рис.16 показан другой вариант построения регулятора. Этот регулятор так же может быть использован для различных вариантов применения, регулятор освещенности, температуры, напряжения, тока и др.


Рис. 16. Регулятор температуры на основе регулятора освещенности

Выпрямительная часть построена на дискретных диодах серии 1N4007, так же можно использовать диодный мост серии B500S. Симистор BT136B-600E в корпусе D2PAK, применен в целях экономии места, подойдет другой симистор из этой серии.

При небольшой доработке данных схем можно разработать датчик автоматического включения света, например на основе звукового эффекта, с включением на звук, или используя оптический датчик на ИК-лучах, а так же можно создать схему дистанционного управления освещением.

Таблица 1. Характеристики выпрямителей

P/N Корпус Импульсное обратное напряжение, V RRM (В) Средний ток прямой макс, I FAV (А) Ударный прямой ток, I FSM (А) Напряжение прямое Ток утечки
V F (В) I F (А) I R (мкА) V R (В)
Выпрямители
1N4001 DO-41 50 1 50 1.1 1 5 50
1N4002 DO-41 100 1 50 1.1 1 5 100
1N4003 DO-41 200 1 50 1.1 1 5 200
1N4004 DO-41 400 1 50 1.1 1 5 400
1N4005 DO-41 600 1 50 1.1 1 5 600
1N4006 DO-41 800 1 50 1.1 1 5 800
1N4007 DO-41 1000 1 50 1.1 1 5 1000
1N4007-13 DO-41 1300 1 50 1.1 1 5 1300
EM513 DO-41 1600 1 50 1.1 1 5 1600
EM516 DO-41 1800 1 50 1.1 1 5 1800
EM518 DO-41 2000 1 50 1.1 1 5 2000
S1A SMA 50 1 30 1.1 1 5 50
S1B SMA 100 1 30 1.1 1 5 100
S1D SMA 200 1 30 1.1 1 5 200
S1G SMA 400 1 30 1.1 1 5 400
S1J SMA 600 1 30 1.1 1 5 600
S1K SMA 800 1 30 1.1 1 5 800
S1M SMA 1000 1 30 1.1 1 5 1000
S1T SMA 1300 1 30 1.1 1 5 1300
S1W SMA 1600 1 30 1.1 1 5 1600
S1X SMA 1800 1 30 1.1 1 5 1800
S1Y SMA 2000 1 30 1.1 1 5 2000
S2A SMB 50 2 50 1.1 1.15 5 50
S2B SMB 100 2 50 1.1 1.15 5 100
S2D SMB 200 2 50 1.1 1.15 5 200
S2G SMB 400 2 50 1.1 1.15 5 400
S2J SMB 600 2 50 1.1 1.15 5 600
S2K SMB 800 2 50 1.1 1.15 5 800
S2M SMB 1000 2 50 1.1 1.15 5 1000
S2T SMB 1300 2 50 1.1 1.15 5 1300
S2W SMB 1600 2 50 1.1 1.15 5 1600
S2X SMB 1800 2 50 1.1 1.15 5 1800
S2Y SMB 2000 2 50 1.1 1.15 5 2000
S3A SMC 50 3 110 1.15 3 5 50
S3B SMC 100 3 110 1.15 3 5 100
S3D SMC 200 3 110 1.15 3 5 200
S3G SMC 400 3 110 1.15 3 5 400
S3J SMC 600 3 110 1.15 3 5 600
S3K SMC 800 3 110 1.15 3 5 800
S3M SMC 1000 3 110 1.15 3 5 1000
S3T SMC 1300 3 110 1.15 3 5 1300
S3W SMC 1600 3 110 1.15 3 5 1600
S3X SMC 1800 3 110 1.15 3 5 1800
S3Y SMC 200 3 110 1.15 3 5 2000
Мосты выпрямительные
MS40 Micro-DIL 80 0.5 20 1.2 0.5 10 80
MS80 Micro-DIL 160 0.5 20 1.2 0.5 10 160
MS125 Micro-DIL 250 0.5 20 1.2 0.5 10 250
MS250 Micro-DIL 600 0.5 20 1.2 0.5 10 600
MS380 Micro-DIL 800 0.5 20 1.2 0.5 10 800
MS50 Micro-DIL 1000 0.5 20 1.2 0.5 10 1000
B40S2A SO-DIL 80 2.3 65 0.95 2 10 80
B80S2A SO-DIL 160 2.3 65 0.95 2 10 160
B125S2A SO-DIL 250 2.3 65 0.95 2 10 250
B250S2A SO-DIL 600 2.3 65 0.95 2 10 600
B380S2A SO-DIL 800 2.3 65 0.95 2 10 800
B40S SO-DIL 80 1 40 1.1 1 10 80
B80S SO-DIL 160 1 40 1.1 1 10 160
B125S SO-DIL 250 1 40 1.1 1 10 250
B250S SO-DIL 600 1 40 1.1 1 10 600
B380S SO-DIL 800 1 40 1.1 1 10 800
B500S SO-DIL 1000 1 40 1.1 1 10 100

Diotec для счетчиков электроэнергии

Счетчики электроэнергии для переменного тока начинают свою историю с конца 19 века, когда в 1888 году был разработан первый счетчик электроэнергии Оливером Б. Шелленбергом.

Существуют три вида электросчетчиков:

  • индукционные (механические) наиболее простые и дешевые, имеют ряд недостатков: большая погрешность вычисления, отсутствие тарификации измерений, нет возможности дистанционного снятия показаний.
  • цифровые (электронные) эти счетчики дороже индукционных, но имеют ряд преимуществ, они обладают высокой точностью измерений, удобный в использовании интерфейс (ЖКИ) и набор функций для пользователей, средний срок службы таких счетчиков составляет 30 лет. В цифровых счетчиках есть возможность установки нескольких тарифов, и возможность включения таких счетчиков в общую систему с возможностью дистанционного снятия показаний (АСКУЭ), как правило, такие счетчики обладают автоматической корректировкой по температуре, где могут быть применены цифровые термодатчики серии LM75, NE16, SE95.
  • гибридные счетчики электроэнергии - наиболее редко встречающийся вариант счетчиков, где используется цифровой интерфейс, индукционная или электрическая измерительная часть и механическое вычислительное устройство.

Счетчики электроэнергии необходимо разделять на несколько функциональных узлов: блок питания, схема счетчика, корректирующие цепи и др. Блок питания преобразует высокое переменное входное напряжение в низкое прямое и обеспечивает питание всех цепей счетчика. Схема счетчика измеряет ток, потребляемый нагрузкой, посредством трансформатора тока, через который протекает ток. Другие блоки электросчетчика выполняют целый ряд различных функций: вывод показаний и управление через проводные (Ethernet), или беспроводные (Wi-Fi, WiMax, ZeegBee) сети, управление ЖКИ дисплеем, коррекция точности, термокомпенсация счетчика и др.

Рассмотрим вариант применения диодного моста в счетчике электроэнергии, для примера возьмем схему наиболее простого однофазного счетчика рис.17.

Счетчик состоит из микросхемы обработки, трех трансформаторов тока, цепи питания, электромеханического счетного устройства и дополнительных цепей.

В качестве регистра электроэнергии используется простое электромеханическое отсчетное устройство, в котором применен двухфазный шаговый двигатель.


Рис. 17. Схема однофазного счетчика

Электропитание счетчика обеспечивается источником, построенным на токовом трансформаторе и двухполупериодном выпрямителе, в качестве выпрямительных диодов здесь применены наиболее популярные выпрямительные диоды серии 1N4007, которые можно заменить диодными мостами серии MS250, B500S предназначенные для поверхностного монтажа или аналогичными диодами серии S1M в SMD исполнении.

Diotec для блоков питания и AC/DC-DC/DC преобразователей

Классическим блоком питания является трансформаторный БП. В общем случае он состоит из понижающего трансформатора, с первичной и вторичной обмоткой, выпрямитель, преобразующий переменное напряжение в постоянное. В большинстве случаев выпрямитель состоит из одного диода, например серии 1N400x, или четырех диодов, включенных по мостовой схеме и образующих диодный мост на дискретных элементах. Но как уже рассматривалось ранее, такое включение диодов имеет ряд недостатков по сравнению с диодным мостом в виде монолитной конструкции. Как правило, после выпрямителя устанавливается фильтр, сглаживающий пульсации, обычно для этого применяется конденсатор большой емкости. Так же могут быть установлены фильтры высокочастотных помех (дроссель), всплесков (TVS-диоды, например серии BZW04-xxx, P4KExx, 1.5KExx), защиты от короткого замыкания, стабилизаторы напряжения и тока (стабилитроны, например серии ZPDxx, ZPYxx, 1N53xx, BZVxx, BZXxx).

Рассмотрим одну из простых схем трансформаторного блока питания, схема которого приведена на рис.18.

Выходное напряжение плавно регулируется резистором R7от 0 до 30 В. К тому же данный блок питания имеет плавную регулировку ограничения по току.

Напряжение с трансформатора выпрямляется диодным мостом серии GBU6B и подается на схему стабилизации и далее схемы регулирования тока напряжения и защиты.


Рис. 18. Трансформаторный блок питания

В настоящее время больший интерес представляют импульсные источники питания, т.к. они имеют ряд преимуществ, таких как: небольшой вес, высокий КПД, низкая стоимость, повышенная пиковая мощность при сравнимых габаритах, широкий диапазон питающего напряжения, система защиты.

В импульсных блоках питания переменное напряжение сначала выпрямляется. Полученное постоянное напряжение используется для питания широтно-импульсного модулятора (ШИМ), контроллера, драйверов и преобразователя, с помощью которого постоянное напряжение преобразуется в прямоугольные импульсы c заданной частотой и скважностью, подаваемые на трансформатор. В таких блоках питания могут применяться малогабаритные трансформаторы - это объясняется тем, что с ростом частоты питающего напряжения уменьшаются требования к габаритам сердечника. В большинстве случаев такой сердечник может быть выполнен из ферромагнитных материалов, в отличие от сердечников низкочастотных трансформаторов, для которых используется электротехническая сталь.

Одна из выходных обмоток трансформатора используется для обратной связи. В зависимости от напряжения на ней (например, при изменении тока нагрузки) изменяется частота или скважность импульсов на выходе ШИМ контроллера. Таким образом, с помощью этой обратной связи блок питания поддерживает стабильное выходное напряжение.

Рассмотрим одну из простейших принципиальных схем импульсного источника питания, показанную на рис.19.

Источники питания представляет собой обратноходовой (FlyBack) ИИП.


Рис. 19. Схема импульсного источника питания

Источник питания имеет два выхода и обеспечивает напряжение 36 В и ток до 3 А общей мощностью до 220 Вт. Выпрямление входного напряжения обеспечивается диодным мостом KBU6M, TVS-диоды серии P6KE200A ограничивают выбросы напряжения. Микросхема AD1 выполняет функцию управления и ключа. Блок питания имеет гальваническую развязку входа и выхода, в том числе и цепи обратной связи. Имеется возможность плавной подстройки выходного напряжения резистором R7.

Рассмотрим еще одну интересную схему импульсного источника питания, показанную на рис.20.

Блок питания обеспечивает выходное напряжение до 5 В и ток до 1,2 А.


Рис. 20. Схема импульсного источника питания на основе TEA1522

Сердцем этого источника питания является микросхема TEA1522, которая представляет собой законченное решение для построения электронной части ИИП (управляющая схема и ключ в одном корпусе).

Входная часть блока питания выполнена на хорошо известных дискретных диодах серии 1N4007, которые как рассматривалось ранее можно заменить диодным мостом, выполненным в едином монолитном корпусе серии MS250, B500S.

Рассмотрим еще одно из применений диодных выпрямителей в бытовой технике, на примере блока управления холодильником для этого рассмотрим простую схему приведенную на рис.21.


Рис. 21. Схема блока управления холодильником

В схеме блока управления состоит из блока терморегулировки, таймера задержки включения, узла контроля напряжения сети.

Для выпрямления входного напряжения в данной схеме применен диодный мост российского производства серии КЦ407, который может быть заменен четырьмя дискретными диодами серии 1N4002-1N4007 или диодным мостом серии MS250, B500S.

Diotec для зарядных устройств

Рассмотрим простой пример применения диодных мостов в зарядных устройствах, на примере некоторых простых схем.


Рис. 22. Схема зарядного устройства

В схеме на рис.22 диодный мост выполнен на одном из распространенных диодов серии 1N4004, который можно заменить диодным мостом в виде монолитного блока серии MS250.

На схеме рис.23 представлен простейший вариант применения такого зарядного устройства на примере электрического карманного фонаря работающего от аккумулятора.

Принцип работы фонаря простой, при подключении сети переменного тока аккумулятор начинает заряжаться.


Рис. 23. Схема карманного фонаря

Переменное напряжение сети преобразуется мостовой схемой на диодах серии 1N4004, регулятор напряжения на микросхеме серии 7805 обеспечивает постоянное напряжение схемы.

Такой вариант исполнения карманного фонаря очень удобен, в схеме используется минимум элементов и вся конструкция может быть выполнена в корпусе самого фонаря с выводом контактов для подключения к сети переменного тока.

Diotec для сварочных аппаратов

Рассмотрим еще одно из наиболее популярных устройств, где применяются диодные мосты - это сварочные аппараты. На рис.24 приведена схема простейшего бытового сварочного аппарата.


Рис. 24. Схема бытового сварочного аппарата

Данная схема сварочного аппарата напоминает схему любого зарядного устройства для аккумуляторов, за исключением наличия понижающего трансформатора, который позволяет выбрать потребляемый устройством ток.

Выпрямителем здесь является диодный мост серии KBPC5012 (50 А, 1200 В).

Для преобразования зарядного устройства в недорогой сварочный аппарат необходимо сделать несколько доработок: добавить электромагнитное реле для управления током сварки, установить вентилятор для охлаждения трансформатора, а так же поставить систему автоматического регулирования мощности.

На рис.25 приведен еще один вариант построения сварочного аппарата выполненного на базе Pic-микроконтроллера серии PIC16F628. Схема позволяет управлять скоростью подачи проволоки, регулируемая потенциометром.



Рис. 25. Схема бытового сварочного аппарата на PIC16F628

Выпрямитель выполнен на четырех диодах серии 1N5403 (3 А, 300 В). Для индикации параметров сварочного аппарата применен семисегментный светодиодный индикатор с общим анодом управляемый Pic-микроконтроллером.

Diotec для блоков управления электродвигателем

Электродвигатели бывают постоянного тока и переменного тока, одно, двух и трехфазные, многофазные, коллекторные и бесколлекторные, синхронные и асинхронные, шаговые, вентильные и другие. На базе этих двигателей строятся электроприводные системы с различными вариантами управления, в настоящее время самыми распространенными являются микропроцессорные электроприводы. Электроприводы с цифровым микропроцессорным управлением очень широко применяются не только в промышленных областях, таких как станкостроение, автомобильная промышленность, но и в бытовой технике, медицинской технике, электроинструменте.

Рассмотрим некоторые простые схемы управления электродвигателем.

Схема на рис.26 позволяет управлять электромотором мощностью до 5 кВт, здесь применен двигатель постоянного тока, и простая схема с применением реле. Схема обеспечивает плавный запуск и ручную установку нужной частоты вращения электромотором.


Рис. 26. Схема управления электродвигателем

В схеме управления применен диодный мост серии B125S (1 А, 125 В) в корпусе SO-DIL. Генератора импульсов, выполненный на транзисторе BD238, синхронизирован с периодом пульсации сетевого напряжения. Схема управления подает сигнал на управляющие выводы тиристоров, здесь применены тиристоры серии BT145-R (25 А, 800 В) в корпусе TO220AB. Вместо выпрямительных диодов серии P1000G на ток до 10 А и напряжение 400 В можно применить диодные мосты серии KBPC2512F (800 В, 25 А).

Схемы управления маломощными электродвигателями

Регулировать частоту вращения маломощного коллекторного электродвигателя можно, включая последовательно с ним резистор. Однако такой вариант дает низкий КПД, и не дает возможности делать плавную регулировку вращения. Главное, что такая мера приводит к остановке вращения вала: электродвигатель "зависает" при малом напряжении питания в некотором положении ротора. Схема ШИМ-регулятора оборотов маломощного коллекторного двигателя приведенная на рис.27 свободна от таких недостатков. Такую схему можно так же применять для регулировки яркости свечения ламп накаливания.


Рис. 27. ШИМ-регулятор оборотов маломощного коллекторного электродвигателя

Данная схема выполнена на интегральном таймере серии ICM7555 и позволяет регулировать частоту вращения в пределах от 2 до 98% периода повторения импульсов.

Входная часть регулятора выполнена на диодном мосту серии MS250 (250 В, 0,5 А) в корпусе SuperMicroDIL.

Диодные выпрямители для одно- и трехфазных приложений

Для применения в источниках бесперебойного питания и схемах управления электродвигателем, инверторах и промышленных источниках питания компания Diotec предлагает полупроводниковые диоды и диодные выпрямительные модули. Компания имеет большой портфолио диодных выпрямителей, для построения одно- и трехфазных схем.

Входной выпрямитель можно интегрировать в состав инвертора или использовать как самостоятельный блок. При выборе того или иного элемента схемы необходимо учитывать тепловые характеристики и стоимость схем.

Как инвертор, так и диодный мост рассеивают некоторую мощность. Инвертор и диодный мост, расположенные в одном корпусе имеют ряд ограничений при использовании, т.к. рассеиваемая мощность должны быть отведена с достаточно небольшой площади, в этом случае необходимо ставить радиатор, следствием этого является удорожание схемы. Применение дискретных модулей выпрямителя и инвертора в этом случае может оказаться более целесообразным. Компания Diotec предлагает компромиссное решение в виде отдельного модуля выпрямителя. Такое решение обеспечивает наилучший отвод тепла, а значит и лучше стабильность и срок службы элемента. Серия трехфазных мостов DB с терминалами типа Fast-On и серия DBI в корпусах собственной разработки Diotec с односторонним расположением выводов, наилучшим образом подходит для схем малой и средней мощности.

Трехфазные выпрямители серии DB рассчитаны на ток 15-35 А при напряжении до 1600 В, выпрямители серии DBI рассчитаны на ток до 25 А при напряжении до 1600 В.

В портфолио диодных выпрямителей компании Diotec насчитывается большой перечень однофазных выпрямителей, таких серий как B40, B80, B125/250/380, CS рассчитанных на ток до 7А при напряжении до 1000 В, GBS, GBI, GBU, KBU, KBPC, PB на ток 4-35 А и напряжение до 1600 В. В таблице 2 приведены некоторые наименования диодных выпрямителей этих серий и их краткие характеристики.

Таблица 2. Характеристики одно- и трехфазных диодных выпрямителей

P/N Упаковка, мм Импульсное обратное напряжение, V RRM В Средний ток прямой макс, I FAV А Ударный прямой ток 50/60 Гц, I FSM А Напряжение прямое Ток утечки
V F В I F А I R мкА V R В
Выпрямители 3-х фазные
DB15/25-005 28,5х28,5х10 50 15/25 275/385 1.05 7.5 10 50
DB15/25-01 28,5х28,5х10 100 15/25 275/385 1.05 7.5 10 100
DB15/25-02 28,5х28,5х10 200 15/25 275/385 1.05 7.5 10 200
DB15/25-04 28,5х28,5х10 400 15/25 275/385 1.05 7.5 10 400
DB15/25-06 28,5х28,5х10 600 15/25 275/385 1.05 7.5 10 600
DB15/25-08 28,5х28,5х10 800 15/25 275/385 1.05 7.5 10 800
DB15/25-10 28,5х28,5х10 1000 15/25 375/385 1.05 7.5 10 1000
DB15/25-12 28,5х28,5х10 1200 15/25 275/385 1.05 7.5 10 1200
DB15/25-14 28,5х28,5х10 1400 15/25 275/385 1.05 7.5 10 1400
DB15/25-16 28,5х28,5х10 1600 15/25 275/385 1.05 7.5 10 1600
DB35-005 28,5х28,5х10 50 35 500 1.02 17.5 10 50
DB35-01 28,5х28,5х10 100 35 500 1.05 17.5 10 100
DB35-02 28,5х28,5х10 200 35 500 1.05 17.5 10 200
DB35-04 28,5х28,5х10 400 35 500 1.05 17.5 10 400
DB35-06 28,5х28,5х10 600 35 500 1.05 17.5 10 600
DB35-08 28,5х28,5х10 800 35 500 1.05 17.5 10 800
DB35-10 28,5х28,5х10 1000 35 500 1.05 17.5 10 1000
DB35-12 28,5х28,5х10 1200 35 500 1.05 17.5 10 1200
DB35-14 28,5х28,5х10 1400 35 500 1.05 17.5 10 1400
DB35-16 28,5х28,5х10 1600 35 500 1.05 17.5 10 1600
DBI15/25-005 40х20х10 200 15/25 275/385 1.05 7.5/12.5 10 50
DBI15/25-01 40х20х10 400 15/25 275/385 1.05 7.5/12.5 10 100
DBI15/25-02 40х20х10 600 15/25 275/385 1.05 7.5/12.5 10 200
DBI15/25-04 40х20х10 800 15/25 275/385 1.05 7.5/12.5 10 400
DBI15/25-06 40х20х10 1000 15/25 275/385 1.05 7.5/12.5 10 600
DBI15/25-08 40х20х10 1200 15/25 275/385 1.05 7.5/12.5 10 800
DBI15/25-10 40х20х10 1400 15/25 275/385 1.05 7.5/12.5 10 1000
DBI15/25-12 40х20х10 1600 15/25 275/385 1.05 7.5/12.5 10 1200
DBI15/25-14 40х20х10 50 15/25 275/385 1.05 7.5/12.5 10 1400
DBI15/25-16 40х20х10 100 15/25 275/385 1.05 7.5/12.5 10 1600
DBI25-005A 35х25х4 50 25 390 1.05 12.5 10 50
DBI25-04A 35х25х4 400 25 390 1.05 12.5 10 400
DBI25-08A 35х25х4 800 25 390 1.05 12.5 10 800
DBI25-12A 35х25х4 1200 25 390 1.05 12.5 10 1200
DBI25-16A 35х25х4 1600 25 390 1.05 12.5 10 1600
DBI6-005 40х20х10 200 6 135 1.05 3 10 50
DBI6-01 40х20х10 400 6 135 1.05 3 10 100
DBI6-02 40х20х10 600 6 135 1.05 3 10 200
DBI6-04 40х20х10 800 6 135 1.05 3 10 400
DBI6-06 40х20х10 1000 6 135 1.05 3 10 600
DBI6-08 40х20х10 1200 6 135 1.05 3 10 800
DBI6-10 40х20х10 1400 6 135 1.05 3 10 1000
DBI6-12 40х20х10 1600 6 135 1.05 3 10 1200
DBI6-14 40х20х10 900 6 135 1.05 3 10 1400
DBI6-16 40х20х10 1000 6 135 1.05 3 10 1600
Мосты выпрямительные
B125C1500A/B 19х3,5х10 250 1.8 50 10 250
B125D DIL 250 1 40 1.1 1 10 250
B250C1500A/B 19х3,5х10 600 1.8 50 10 600
B250S DIL 600 1 40 1.1 1 10 600
B380C1500A/B 19х3,5х10 800 1.8 50 10 800
B380D DIL 800 1 40 1.1 1 10 800
B40C1500A/B 19х3,5х10 80 1.8 50 10 80
B40D DIL 80 1 40 1.1 1 10 80
B500C1500A/B 19х3,5х10 1000 1.8 50 10 1000
B500S DIL 1000 1 40 1.1 1 10 1000
B80C1500A/B 19х3,5х10 160 1.8 50 10 160
B80D DIL 160 1 40 1.1 1 10 160
CS10D DIL 20 1 40 0.5 1 500 20
GBI10M 32х5,6х17 1000 3 220 10 1000
GBU10M 20,8х3,3х18 1000 8.4 300 1 12 10 1000
KBPC10/15/2500FP
KBPC601 15,2х15,2х6,3 100 3.8 125 1.2 3 10 100
KBU12M 23,5х5,7х19,3 1000 8.4 300 1 12 10 1000
KBU8M 23,5х5,7х19,3 1000 5.6 300 1 8 10 1000
MS500 SuperMicroDIL 1000 0.5 20 1.2 0.5 10 1000
MYS250 MicroDIL 600 0.5 20 1.2 0.5 10 600
PB1001 19х19х6,8 70 10 150 1.2 5 10 35
S80 MiniDIL (TO-269AA) 160 0.8 44 1.2 0.8 10 160

Для применения в одно- и трехфазных схемах компания Diotec предлагает новые полумосты серии S16 в корпусе D2PAK (TO263). Два или три таких полумоста могут легко сформировать одно- или трехфазную схему входного выпрямителя.


Рис. 28. Полумост S16

Такой полумост улучшает процесс автоматической пайки плат и не требует ручного процесса монтажа мост/радиатор в источниках питания и блоках управления двигателем, рассчитанных на работу до нескольких сотен Ватт.

Серия S16 содержит два диода номиналом 8 А, которые могут использоваться, для создания однофазного моста с максимальным током 16 А или трехфазного моста с током до 24 А. Обратное напряжение полумоста достигает 1000 В, максимальный ток перегрузки 135 A при частоте 50 Гц.

Diotec на рынке электронных компонентов

Как видно из рассмотренных примеров области применения диодных выпрямителей, очень велик. Компания Diotec, являющаяся одним из лидеров на рынке полупроводниковых элементов, не ограничивается производством диодных выпрямителей, она имеет сильный портфолио полупроводниковых продуктов диодов и транзисторов общего применения, TVS-диодов (или как еще их называют супрессоры, или ограничительные диоды), быстрые и сверхбыстрые диоды, диоды Шоттки, диоды Зенера и др.

Российский рынок электроники имеет свою специфику работы, и порой цена на компонент становится основным аргументом при выборе того или иного производителя, чем электрические характеристики и их надежность. Многие азиатские производители поставляют свою дешевую продукцию на российский рынок. Компания Diotec является большим подспорьем на российском рынке электронных компонентов для азиатских компаний, обладая высочайшим качеством продукции и приемлемой ценой.

В сочетании с передовыми технологиями и немецким подходом к организации производства продукция Diotec позволяет применять ее в различных отраслях электроники, где предъявляются повышенные требования к надежности.

Опыт применения компонентов Diotec показал, что их легко можно применять в электронике, где ранее применялись электронные компоненты других известных производителей, таких как International Rectifier (IR), STMicroelectronics, ON-Semiconductors, Vishay, а зачастую и превосходить качественные и ценовые параметры этих производителей.

Егоров Алексей ,
Компания

Введение...................................................................................................................... 3

§1. Выпрямительные диоды....................................................................................... 4

§2. Стабилитроны....................................................................................................... 9

§3. Варикапы............................................................................................................ 12

§4. Светодиоды......................................................................................................... 15

§5. Фотодиоды.......................................................................................................... 18

Список литературы.................................................................................................. 22

Диод (от др.-греч. δι - два и -од из слова электрод) - двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу - катодом.

Развитие диодов началось в третьей четверти XIX века сразу по двум направлениям: в 1873 году британский учёный Фредерик Гутри открыл принцип действия термионных (вакуумных ламповых с прямым накалом) диодов, в 1874 году германский учёный Карл Фердинанд Браун открыл принцип действия кристаллических (твёрдотельных) диодов.

Принципы работы термионного диода были заново открыты тринадцатого февраля 1880 года Томасом Эдисоном, и затем, в 1883 году, запатентованы (патент США № 307031). Однако дальнейшего развития в работах Эдисона идея не получила. В 1899 году германский учёный Карл Фердинанд Браун запатентовал выпрямитель на кристалле. Джэдиш Чандра Боус развил далее открытие Брауна в устройство применимое для детектирования радио. Около 1900 года Гринлиф Пикард создал первый радиоприёмник на кристаллическом диоде. Первый термионный диод был запатентован в Британии Джоном Амброзом Флемингом (научным советником компании Маркони и бывшим сотрудником Эдисона в 1904 году в ноябре шестнадцатого (патент США № 803684 от ноября 1905 года). В 1906 году в ноябре двадцатого Пикард запатентовал кремниевый кристаллический детектор (патент США № 836531).

В конце XIX века устройства подобного рода были известны под именем выпрямителей, и лишь в 1919 году Вильям Генри Иклс ввёл в оборот слово «диод», образованное от греческих корней «di» - два, и «odos» - путь.

Выпрямитель электрического тока - механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток.

Диодный выпрямитель или диодный мост (то есть 4 диода для однофазной схемы (6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы), соединённых между собой по схеме) - основной компонент блоков питания практически всех электронных устройств.

Диодный мост - электронная схема, предназначенная для преобразования ("выпрямления") переменного тока в пульсирующий постоянный. Такое выпрямление называется двухполупериодным.

Выделим два варианта включения мостовых схем однофазную и трехфазную.

Однофазная мостовая схема:

На вход схемы подается переменное напряжение (для простоты будем рассматривать синусоидальное), в каждый из полупериодов ток проходит через два диода, два других диода закрыты (рис.1 а, б).


Рисунок 1 а) Выпрямление положительной полуволны б) Выпрямление отрицательной полуволны

В результате такого преобразования на выходе мостовой схемы получается пульсирующее напряжение вдвое большее частоты напряжения на входе (рис.2 а, б, с)



Рисунок 2. а) исходное напряжение (напряжение на входе), б) однополупериодное выпрямление, с) двухполупериодное выпрямление

Трехфазная мостовая схема:

В схеме трехфазного выпрямительного моста в результате получается напряжение на выходе с меньшими пульсациями, чем в однофазном выпрямителе (рис.3).



Рисунок 3. Напряжение на выходе трехфазного выпрямителя

Для выпрямления трехфазных напряжений так же широко используются диодные выпрямители. Очень распространены схемы выпрямителей на полумостовых диодных выпрямителях рис. 4.



Рисунок 4. Трехфазная схема выпрямителя на полумостах

Как правило, для сглаживания пульсирующего напряжения на выходе выпрямителя применяется фильтр в виде конденсатора или дросселя, к тому же для стабилизации выходного напряжения устанавливается стабилитрон рис. 5.



Рисунок 5. Схема диодного выпрямителя с фильтром

Конструкция, преимущества


Рисунок 6. Диодный мост на дискретных элементах

Конструкция диодных мостов может быть выполнена из отдельных диодов, или в виде монолитной конструкции (диодной сборки). Монолитная конструкция, как правило, предпочтительней - она дешевле и меньше по объему. Диоды в ней подобраны на заводе изготовителе и параметры максимально аналогичны друг другу, в отличие от отдельных диодов, где параметры могут отличаться друг от друга, к тому же в рабочем состоянии диоды в диодной сборке работают в одинаковом тепловом режиме, что уменьшает вероятность выхода из строя элемента. Еще одним преимуществом диодной сборки является ее простота монтирования на плате. Основным недостатком монолитной конструкции является не возможность замены одного диода, вышедшего из строя другим, в этом случае необходимо менять всю сборку, но происходит это крайне редко, если рабочие режимы диодного моста подобраны правильно.


Рисунок 7. Диодная сборка

Область применения выпрямительных мостов обширна, например:

Приборы освещения (люминесцентные лампы, ЭПРА, модули солнечных батарей);

Счетчики электроэнергии;

Блоки питания и управления бытовой техники (телевизоров, миксеров, стиральных машин, пылесосов, set-top-box, компьютеров, холодильников, электроинструмента и др.), зарядные устройства мобильных телефонов и ноутбуков, AC/DC-DC/DC преобразователи;

Промышленное (блоки питания, зарядные устройства, блоки управления электродвигателями, регуляторы мощности и др.), автомобильные выпрямители.

Стабилитрон (диод Зенера) - полупроводниковый диод, предназначенный для стабилизации напряжения в источниках питания. По сравнению с обычными диодами имеет достаточно низкое регламентированное напряжение пробоя (при обратном включении) и может поддерживать это напряжение на постоянном уровне при значительном изменении силы обратного тока. Материалы, используемые для создания p-n перехода стабилитронов, имеют высокую концентрацию примесей. Поэтому, при относительно небольших обратных напряжениях в переходе возникает сильное электрическое поле, вызывающее его электрический пробой, в данном случае являющийся обратимым (если не наступает тепловой пробой вследствие слишком большой силы тока).

Рисунок 8. Обозначение стабилитрона на принципиальных схемах

Рисунок 9. Обозначение двуханодного стабилитрона на принципиальных схемах

В основе работы стабилитрона лежат два механизма:

· Лавинный пробой p-n перехода

· Туннельный пробой p-n перехода (Эффект Зенера в англоязычной литературе)

Несмотря на схожие результаты действия, эти механизмы различны, хотя и присутствуют в любом стабилитроне совместно, но преобладает только один из них. У стабилитронов до напряжения 5,6 вольт преобладает туннельный пробой с отрицательным температурным коэффициентом, выше 5,6 вольт доминирующим становится лавинный пробой с положительным температурным коэффициентом. При напряжении, равном 5,6 вольт, оба эффекта уравновешиваются, поэтому выбор такого напряжения является оптимальным решением для устройств с широким температурным диапазоном применения.

Пробойный режим не связан с инжекцией неосновных носителей заряда. Поэтому в стабилитроне инжекционные явления, связанные с накоплением и рассасыванием носителей заряда при переходе из области пробоя в область запирания и обратно, практически отсутствуют. Это позволяет использовать их в импульсных схемах в качестве фиксаторов уровней и ограничителей.

Виды стабилитронов:

Прецизионные - обладают повышенной стабильностью напряжения стабилизации, для них вводятся дополнительные нормы на временную нестабильность напряжения и температурный коэффициент напряжения (например: 2С191, КС211, КС520);

Двуханодные - обеспечивают стабилизацию и ограничение двухполярных напряжений, для них дополнительно нормируется абсолютное значение несимметричности напряжения стабилизации (например: 2С170А, 2С182А);

Быстродействующие - имеют сниженное значение барьерной ёмкости (десятки пФ) и малую длительность переходного процесса (единицы нс), что позволяет стабилизировать и ограничивать кратковременные импульсы напряжения (например: 2С175Е, КС182Е, 2С211Е).

Существует немало устройств, созданных с целью преобразования электрического тока, и выпрямительные диоды – одни из них.

Выпрямительный диод – преобразователь тока переменного в постоянный. Является одним из видов полупроводников. Широкое применение получил благодаря основной характеристике – переводу электрического тока строго в одном направлении.

Принцип действия

Необходимый эффект при работе устройства создают особенности p-n перехода. Заключаются в том, что рядом с переходом двух полупроводников встраивается слой, который характеризуется двумя моментами: большим сопротивлением и отсутствием носителей заряда. Далее при воздействии на данный запирающий слой переменного напряжения извне толщина его уменьшается и впоследствии исчезает. Возрастающий во время этого ток и является прямым током, который проходит от анода к катоду. В случае перемены полярности внешнего переменного напряжения запирающий слой будет больше, и сопротивление неминуемо возрастет.

ВАХ выпрямительного диода (вольт-амперная характеристика) также дает представление о специфике работы выпрямителя и является нелинейной. Выглядит следующим образом: существует две ветви – прямая и обратная. Первая отражает наибольшую проводимость полупроводника при возникновении прямой разницы потенциалов. Вторая указывает на значение низкой проводимости при обратной разнице потенциалов.

Вольт-амперные характеристики выпрямителя прямо пропорциональны температуре, с повышением которой разность потенциалов сокращается. Электрический ток не пройдет через устройство в случае низкой проводимости, но лавинный пробой происходит в случае возросшего до определенного уровня обратного напряжения.

Использование сборки

При эксплуатации выпрямительного полупроводникового диода польза извлекается только из половины волн переменного тока, соответственно, безвозвратно теряется более половины входного напряжения.

С целью улучшить качество преобразования переменного тока в постоянный используется сборка из четырех устройств – диодный мост. Выгодно отличается тем, что пропускает ток на протяжении каждого полупериода. Диодные мосты производят в виде комплекта, заключенного в пластиковый корпус.


Принципиальная схема диодного моста

Физико-технические параметры

Основные параметры выпрямительных диодов базируются на таких значениях:

  • максимально допустимом значении разницы потенциалов при выпрямлении тока, при котором устройство не выйдет из строя;
  • наибольшем среднем выпрямленном токе;
  • наибольшем значении обратного напряжения.

Выпрямители промышленность выпускает с разными физическими характеристиками. Соответственно, устройства имеют разную форму и способ монтажа. Разделяются при этом на три группы:

  1. Выпрямительные диоды большой мощности. Характеризуются пропускной способностью тока до 400 А и являются высоковольтными. Высоковольтные выпрямительные диоды производятся в корпусах двух видов –штыревом, где корпус герметичный и стеклянный, и таблеточном, где корпус из керамики.
  2. Выпрямительные диоды средней мощности. Обладают пропускной способность от 300 мА до 10А.
  3. Выпрямительные диоды малой мощности. Максимально допустимое значение тока – до 300 мА.

Выбор выпрямительных диодов

При приобретении устройства необходимо руководствоваться такими параметрами:

  • значениями вольт-амперной характеристики максимально обратного и пикового тока;
  • максимально допустимым обратным и прямым напряжением;
  • средней силой выпрямленного тока;
  • материалом прибора и типом монтажа.

В зависимости от физических характеристик на корпус устройства наносится соответствующее обозначение. Каталог с маркировкой выпрямительных диодов представлен в специализированном справочнике. Необходимо знать, что маркировка импортных аналогов отличается от отечественных.

Также стоит обратить внимание на то, что выпрямительные схемы отличаются по количеству фаз:

  1. Однофазные. Широко применяются для бытовых электроприборов. Существуют диоды автомобильные и для электродуговой сварки.
  2. Многофазные. Незаменимы для промышленного оборудования, общественного и специального транспорта.

Диод Шоттки

Отдельную позицию занимает диод Шоттки. Изобрели его в связи с растущими потребностями в развивающейся отрасли радиоэлектроники. Основное отличие его от остальных диодов заключается в том, что в его конструкцию заложен металл-полупроводник как альтернатива p-n переходу. Соответственно, диод Шоттки обладает своими, уникальными свойствами, которыми не могут похвастаться кремниевые выпрямительные диоды. Некоторые из них:

  • оперативная возобновляемость заряда благодаря его низкому значению;
  • минимальное падение напряжения на переходе при прямом включении;
  • ток утечки обладает большим значением.

При изготовлении диода Шоттки применяют такие материалы, как кремний и арсенид галлия, но иногда применяется и германий. Свойства материалов немного отличаются, но в любом случае, максимально допустимое обратное напряжение для выпрямителя Шоттки составляет не более 1200 V.

В противовес всем достоинствам конструкция данного вида имеет и минусы. Например, в сборке моста устройство категорически не воспринимает превышение обратного тока. Нарушение условия приводит к поломке выпрямителя. Также малое падение напряжения происходит при невысоком напряжении около 60-70 V. Если значение превышает этот показатель, то устройство превращается в обыкновенный выпрямитель.

Стоит отметить, что достоинства диода мощного выпрямительного Шоттки значительно превышают недостатки.

Диод-стабилитрон

Для стабилизации напряжения используют специальное приспособление, способное работать в режиме пробоя, – стабилитрон, зарубежное название которого «диод Зенера». Выполняет свою функцию устройство, работая в режиме пробоя при напряжении обратного смещения. Возрастание силы тока происходит в момент пробоя, одновременно опускается до минимума дифференциальное значение, вследствие чего напряжение стабильное и охватывает достаточно серьезный диапазон обратных токов.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Выпрямительные диоды являются одним из наиболее распространенных типов полупроводниковых диодов. Работавыпрямительных диодов основана на явленииодносторонней проводимости p-n перехода иони предназначены для преобразования переменного тока в постоянный. Для выпрямительных диодов характерно небольшое сопротивление в проводящем состоянии, позволяющее пропускать большие токи. Для эффективного выпрямления выпрямительные диоды должны обеспечить наибольший выпрямленный ток и большое обратное напряжение. С целью получения большого прямого тока выпрямительные диоды выполняются с большой площадью контакта, т.е. плоскостными. Обычно допустимое обратное напряжение составляет 75…80 % пробивного напряжения. Большое допустимое обратное напряжение обеспечивается за счет большого удельного сопротивления базовой области материала полупроводника. В подавляющем большинстве случаев выпрямительные диоды работают на промышленных частотах (50 и 400 Гц), верхняя граница рабочих частот, как правило, не превышает 20 кГц.

Выпрямительные диоды, в основном, изготавливаются из германия и кремния. На рисунке 1.1 показана конструкция маломощного сплавного диода и его условно-графическое обозначение, а на рисунке 1.2 приведены вольт-

Рис.1.1. Условно графическое обозначение а) и конструкция маломощного диода б).

амперные характеристики германиевого а) и кремниевого б) полупровод-никовых выпрямительных диодов для двух температур. Из анализа этих характеристик видно, что:

Прямая ветвь вольтамперной характеристики кремниевых диодов расположена правее, чем для германиевых. Таким образом, пороговое напряжение, при котором наблюдается заметный прямой ток для кремниевого диода, выше германиевого, что несколько ухудшает выпрямительные свойства кремниевых диодов, особенно при выпрямлении напряжений с малой амплитудой;

При комнатной температуре величина обратного тока кремниевых диодов значительно меньше, чем у германиевых диодов, из-за меньшей

концентрации неосновных носителей в кремниевом полупроводнике;



Рис.1.2. Вольтамперные характеристики германиевого а) и кремниевого б) полупроводниковых выпрямительных диодов для двух температур

Вольтамперные характеристики диодов существенно зависят от температуры. При повышении температуры растет генерация пар носителей тока, что вызывает рост собственной проводимости полупроводника, растут прямой и обратный токи, причем обратный ток растет гораздо быстрее, чем прямой ток, и диод теряет свое основное назначение – одностороннюю проводимость. Установлено, что обратный ток увеличивается у германиевых диодов в 2 раза, а у кремниевых в 2,5 раза при увеличении температуры на каждые 10 0 С;



Влияние температуры на характеристики полупроводниковых диодов, изготовленных из германия и кремния, различно и для них существует некоторый интервал допустимых температур. Для германиевых диодов этот интервал составляет -60…+70 0 С, а для кремниевых диодов -60…+120 0 С;

Значение напряжения пробоя кремниевых диодов выше, чем у германиевых, при этом у германиевых диодов механизм пробоя обычно является тепловым, а у кремниевых – электрическим за счет лавинного пробоя.

Для изготовления выпрямительных диодов предпочтительным является кремний, имеющий более высокую допустимую температуру и более низкую цену по сравнению с германием. Однако в мощных низковольтных выпрямителях предпочтительнее германиевые диоды, поскольку они имеют меньшее пороговое напряжение, чем кремниевые. В ряде случаев в мощных выпрямителях применяют диоды Шоттки, в которых используется выпрямляющий контакт металла с полупроводником. Их изготавливают на основе кремния; благодаря меньшему пороговому напряжению (0,3 В вместо 0,7 В у обычных кремниевых диодов) диоды Шоттки обеспечивают более высокий коэффициент полезного действия, особенно в низковольтных выпрямителях.

Параметры, характеризующие свойства выпрямительных диодов, подразделяются на статические и динамические . К статическим относятся:

Постоянный прямой ток I пр при заданном прямом напряжении V пр на диоде;

Значение обратного тока I обр при заданном значении обратного напряжения V обр ;

Рабочий диапазон температур ;

Отводимая мощность , где Т пер и Т кор – температуры перехода и корпуса диода, R T - тепловое сопротивление переход-корпус;

Максимально допустимый прямой ток диода I пр.мак , который в зависимости от диода может составлять от нескольких десятков м А до нескольких к А;

Максимально допустимое обратное напряжение V обр..мак, которое составляет для диодов из германия до 400В, а из кремния до 1000В;

Максимальная мощность рассеяния , где I – ток, протекающий через диод; V – напряжение, приложенное к диоду;

Сопротивление постоянному току в заданной рабочей точке .

К динамическим параметрам относятся:

Средний выпрямленный ток I прср - среднее за период значение прямого тока;

Среднее прямое напряжение V прср при заданном значении среднего прямого тока;

Максимальная частота f мак , на которой I прср уменьшается в раз по сравнению на низкой частоте;

Максимальная емкость диода С мак ;

Внутреннее или дифференциальное сопротивление диода в рабочей точке , где - приращение напряжения и - приращения тока около рабочей точки;

Коэффициент выпрямления при заданном напряжении .

По величине среднего выпрямленного тока выпрямительные диоды делятся на три группы:

Маломощные (на ток до 0,3А);

Средней мощности (на ток от 0,3 до 10А);

Мощные (на ток свыше 10А).

Выпрямительные диоды и их рабочие режимы необходимо выбирать таким образом, чтобы выделяемая на переходе мощность не превышала мощность рассеяния. Из вольтамперной характеристики (рис.1.2) видно, что уже при сравнительно малых прямых напряжениях (менее одного вольта) прямой ток достигает значительной величины и, чтобы не произошел тепловой пробой, необходимо ограничить значение тока так, чтобы выполнялось условие .

Тепловой пробой возможно также избежать отводом выделяемого тепла, что в диоде малой мощности осуществляется непосредственно корпусом, в диодах средней мощности – специальными устройствами – радиаторами, в которые монтируется диод, а в мощных диодах используется принудительное воздушное или водяное охлаждение.

Помимо дискретных выпрямительных диодов в радиоэлектронной аппаратуре находят применение выпрямительные блоки, конструктивно представляющие собой завершенное устройство, состоящее из нескольких выпрямительных диодов, соединенных по определенной схеме. К ним относятся мостовые схемы, умножители напряжения, диодные сборки и т.д. В высоковольтных выпрямителях находят применение выпрямительные столбы, в которых выпрямительные диоды, обычно кремниевые, соединены последовательно и собраны в единую конструкцию с двумя выводами.

Основное предназначение выпрямительных диодов – преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:


Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.


Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением U IN (график 2) и идет через VD на нагрузку R.


Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой I обр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).


Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.


Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.


Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «~» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Loading...Loading...