Абсолютная и относительная погрешность округления. Абсолютная и относительная погрешности

При измерении какой-нибудь величины неизменно есть некоторое отклонение от правдивого значения, от того что ни один прибор не может дать точного итога. Для того, дабы определить допустимые отклонения полученных данных от точного значения, применяют представления относительной и безусловной погрешности.

Вам понадобится

  • – итоги измерений;
  • – калькулятор.

Инструкция

1. В первую очередь, проведите несколько измерений прибором одной и той же величины, дабы иметь вероятность посчитать действительное значение. Чем огромнее будет проведено измерений, тем вернее будет итог. Скажем, взвесьте яблоко на электронных весах. Возможен, вы получили итоги 0,106, 0,111, 0,098 кг.

2. Сейчас посчитайте действительное значение величины (действительное, от того что правдивое обнаружить нереально). Для этого сложите полученные итоги и поделите их на число измерений, то есть обнаружьте среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

3. Для расчета безусловной погрешности первого измерения вычитайте из итога действительное значение: 0,106-0,105=0,001. Таким же образом вычислите безусловные погрешности остальных измерений. Обратите внимание, самостоятельно от того, получится итог с минусом либо с плюсом, знак погрешности неизменно позитивный (то есть вы берете модуль значения).

4. Дабы получить относительную погрешность первого измерения, поделите безусловную погрешность на действительное значение: 0,001/0,105=0,0095. Обратите внимание, обыкновенно относительная погрешность измеряется в процентах, следственно умножьте полученное число на 100%: 0,0095х100%=0,95%. Таким же образом считайте относительные погрешности остальных измерений.

5. Если правдивое значение теснее вестимо, сразу принимайтесь за расчет погрешностей, исключив поиск среднего арифметического итогов измерений. Сразу вычитайте из правдивого значения полученный итог, при этом вы обнаружите безусловную погрешность.

6. После этого разделяете безусловную погрешность на правдивое значение и умножайте на 100% – это будет относительная погрешность. Скажем, число учеников 197, но его округлили до 200. В таком случае рассчитайте погрешность округления: 197-200=3, относительная погрешность: 3/197х100%=1,5%.

Погрешность является величиной, которая определяет допустимые отклонения полученных данных от точного значения. Существуют представления относительной и безусловной погрешности. Их нахождение – одна из задач математического обзора. Впрочем на практике больше значимо бывает посчитать погрешность разброса какого-нибудь измеряемого показателя. Физические приборы имеют собственную возможную погрешность. Но не только ее надобно рассматривать при определении показателя. Для подсчета погрешности разброса σ нужно провести несколько измерений данной величины.

Вам понадобится

  • Прибор для измерения требуемой величины

Инструкция

1. Измерьте прибором либо другим средством измерения надобную вам величину. Повторите измерения несколько раз. Тем огромнее будет получено значений, тем выше точность определения погрешности разброса. Традиционно проводят 6-10 измерений. Запишите полученный комплект значений измеряемой величины.

2. Если все полученные значения равны, следственно, погрешность разброса равна нулю. Если же в ряду есть отличающиеся значения, вычислите погрешность разброса. Для ее определения существует особая формула.

3. Согласно формуле, вычислите вначале среднюю величину <х> из полученных значений. Для этого сложите все значения, а их сумму поделите на число проводимых измерений n.

4. Определите поочередно разность между всей полученной величиной и средним значением <х>. Запишите итоги полученных разностей. После этого возведите все разности в квадрат. Обнаружьте сумму данных квадратов. Сбережете конечный полученный итог суммы.

5. Вычислите выражение n(n-1), где n – число проводимых вами измерений. Поделите итог суммы из предыдущего вычисления на полученное значение.

6. Возьмите корень квадратный частного от деления. Это и будет погрешность разброса σ, измеренной вами величины.

Проводя измерения, невозможно гарантировать их точность, всякий прибор дает некую погрешность . Дабы узнать точность измерений либо класс точности прибора, нужно определить безусловную и относительную погрешность .

Вам понадобится

  • – несколько итогов измерений либо иная выборка;
  • – калькулятор.

Инструкция

1. Проведите измерения не менее 3-5 раз, дабы иметь вероятность посчитать действительное значение параметра. Сложите полученные итоги и поделите их на число измерений, вы получили действительное значение, которое применяется в задачах взамен правдивого (его определить нереально). Скажем, если измерения дали итог 8, 9, 8, 7, 10, то действительное значение будет равно (8+9+8+7+10)/5=8,4.

2. Обнаружьте безусловную погрешность всего измерения. Для этого из итога измерения вычитайте действительное значение, знаками пренебрегайте. Вы получите 5 безусловных погрешностей, по одному для всякого измерения. В примере они будут равны 8-8,4 = 0,4, 9-8,4 =0,6, 8-8,4=0,4, 7-8,4 =1,4, 10-8,4=1,6 (взяты модули итогов).

3. Дабы узнать относительную погрешность всякого измерения, поделите безусловную погрешность на действительное (правдивое) значение. После этого умножьте полученный итог на 100%, традиционно именно в процентах измеряется эта величина. В примере обнаружьте относительную погрешность таким образом: ?1=0,4/8,4=0,048 (либо 4,8%), ?2=0,6/8,4=0,071 (либо 7,1 %), ?3=0,4/8,4=0,048 (либо 4,8%), ?4=1,4/8,4=0,167 (либо 16,7%), ?5=1,6/8,4=0,19 (либо 19%).

4. На практике для особенно точного отображения погрешности применяют среднее квадратическое отклонение. Дабы его обнаружить, возведите в квадрат все безусловные погрешности измерения и сложите между собой. После этого поделите это число на (N-1), где N – число измерений. Вычислив корень из полученного итога, вы получите среднее квадратическое отклонение, характеризующее погрешность измерений.

5. Дабы обнаружить предельную безусловную погрешность , обнаружьте минимальное число, заведомо превышающее безусловную погрешность либо равное ему. В рассмотренном примере примитивно выберите наибольшее значение – 1,6. Также изредка нужно обнаружить предельную относительную погрешность , в таком случае обнаружьте число, превышающее либо равное относительной погрешности, в примере она равна 19%.

Неотделимой частью всякого измерения является некоторая погрешность . Она представляет собой добротную отзыв точности проведенного изыскания. По форме представления она может быть безусловной и относительной.

Вам понадобится

  • – калькулятор.

Инструкция

1. Погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют идентично при многократном повторении измерений. Они непрерывны либо правомерно изменяются. Они могут быть вызваны неправильной установкой прибора либо несовершенством выбранного способа измерения.

2. Вторые появляются от могущества причин, и беспричинный нрав. К ним дозволено отнести неправильное округление при подсчете показаний и могущество окружающей среды. Если такие ошибки гораздо поменьше, чем деления шкалы этого прибора измерения, то в качестве безусловной погрешности уместно взять половину деления.

3. Промах либо дерзкая погрешность представляет собой итог слежения, тот, что круто отличается от всех остальных.

4. Безусловная погрешность приближенного числового значения – это разность между итогом, полученным в ходе измерения и правдивым значением измеряемой величины. Правдивое либо действительное значение особенно верно отражает исследуемую физическую величину. Эта погрешность является самой легкой количественной мерой ошибки. Её дозволено рассчитать по дальнейшей формуле: ?Х = Хисл – Хист. Она может принимать позитивное и негативное значение. Для большего понимания разглядим пример. В школе 1205 учащихся, при округлении до 1200 безусловная погрешность равняется: ? = 1200 – 1205 = 5.

5. Существуют определенные правила расчета погрешности величин. Во-первых, безусловная погрешность суммы 2-х само­стоятельных величин равна сумме их безусловных погрешностей: ?(Х+Y) = ?Х+?Y. Подобный подход применим для разности 2-х погрешностей. Дозволено воспользоваться формулой: ?(Х-Y) = ?Х+?Y.

6. Поправка представляет собой безусловную погрешность , взятую с обратным знаком: ?п = -?. Её применяют для исключения систематической погрешности.

Измерения физических величин неизменно сопровождаются той либо другой погрешностью . Она представляет собой отклонение итогов измерения от правдивого значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

1. Погрешности могут появиться в итоге могущества разных факторов. Среди них дозволено выделить несовершенство средств либо способов измерения, неточности при их изготовлении, неисполнение особых условий при проведении изыскания.

2. Существует несколько систематизаций погрешностей. По форме представления они могут быть безусловными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:?х = хисл- хист. Вторые определяются отношением безусловных погрешностей к величине правдивого значения показателя.Формула расчета имеет вид:? = ?х/хист. Измеряется в процентах либо долях.

3. Приведенная погрешность измерительного прибора находится как отношение?х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

4. По условиям происхождения различают основные и добавочные. Если измерения проводились в типичных условиях, то появляется 1-й вид. Отклонения, обусловленные выходом значений за пределы типичных, является дополнительной. Для ее оценки в документации обыкновенно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

5. Также погрешности физических измерений подразделяются на систематические, случайные и дерзкие. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые появляются от могущества причин, и беспричинный нрав. Промах представляет собой итог слежения, тот, что круто отличается от всех остальных.

6. В зависимости от нрава измеряемой величины могут применяться разные методы измерения погрешности. 1-й из них это способ Корнфельда. Он основан на исчислении доверительного промежутка в пределах от малейшего до максимального итога. Погрешность в этом случае будет представлять собой половину разности этих итогов: ?х = (хmax-xmin)/2. Еще один из методов – это расчет средней квадратической погрешности.

Измерения могут проводиться с различной степенью точности. При этом безусловно точными не бывают даже прецизионные приборы. Безусловная и относительная погрешности могут быть малы, но в действительности они есть фактически неизменно. Разница между приближенным и точным значениями некой величины именуется безусловной погрешностью . При этом отклонение может быть как в крупную, так и в меньшую сторону.

Вам понадобится

  • – данные измерений;
  • – калькулятор.

Инструкция

1. Перед тем как рассчитывать безусловную погрешность, примите за начальные данные несколько постулатов. Исключите дерзкие погрешности. Примите, что нужные поправки теснее вычислены и внесены в итог. Такой поправкой может быть, скажем, перенос начальной точки измерений.

2. Примите в качестве начального расположения то, что знамениты и учтены случайные погрешности. При этом подразумевается, что они поменьше систематических, то есть безусловной и относительной, характерных именно для этого прибора.

3. Случайные погрешности влияют на итог даже высокоточных измерений. Следственно всякий итог будет больше либо менее приближенным к безусловному, но неизменно будут расхождения. Определите данный промежуток. Его дозволено выразить формулой (Xизм- ?Х)?Хизм? (Хизм+?Х).

4. Определите величину, максимально приближенную к правдивому значению. В реальных измерениях берется среднее арифметическое, которое дозволено обнаружить по формуле, изображенной на рисунке. Примите итог за правдивую величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

5. Зная правдивую величину измерения, вы можете обнаружить безусловную погрешность, которую нужно рассматривать при всех последующих измерениях. Обнаружьте величину Х1 – данные определенного измерения. Определите разность?Х, отняв от большего числа меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание!
Как водится, на практике безусловно точное измерение провести не получается. Следственно за эталонную величину принимается предельная погрешность. Она представляет собой наивысшее значение модуля безусловной погрешности.

Полезный совет
В утилитарных измерениях за величину безусловной погрешности обыкновенно принимается половина наименьшей цены деления. При действиях с числами за безусловную погрешность принимается половина значения цифры, которая находится в дальнейшим за точными цифрами разряде. Для определения класса точности прибора больше главным бывает отношение безусловной погрешности к итогу измерений либо к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методологии. Точность зависит также от наблюдательности и состояния экспериментатора. Погрешности разделяются на безусловные, относительные и приведенные.

Инструкция

1. Пускай однократное измерение величины дало итог x. Правдивое значение обозначено за x0. Тогда безусловная погрешность ?x=|x-x0|. Она оценивает безусловную ошибку измерения. Безусловная погрешность складывается из 3 составляющих: случайных погрешностей, систематических погрешностей и промахов. Обыкновенно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

2. Правдивое значение измеряемой величины находится в интервале (x-?x ; x+?x). Короче это записывается как x0=x±?x. Главно измерять x и?x в одних и тех же единицах измерения и записывать в одном и том же формате числа, скажем, целая часть и три цифры позже запятой. Выходит, безусловная погрешность дает границы промежутка, в котором с некоторой вероятностью находится правдивое значение.

3. Относительная погрешность выражает отношение безусловной погрешности к действительному значению величины: ?(x)=?x/x0. Это безразмерная величина, она может записываться также в процентах.

4. Измерения бывают прямые и косвенные. В прямых измерениях сразу замеряется желанная величина соответствующим прибором. Скажем, длина тела измеряется линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

5. Если итог представляет собой связанность от 3 непринужденно измеряемых величин, имеющих погрешности?x1, ?x2, ?x3, то погрешность косвенного измерения?F=?[(?x1 ?F/?x1)?+(?x2 ?F/?x2)?+(?x3 ?F/?x3)?]. Тут?F/?x(i) – частные производные от функции по всякой из непринужденно измеряемых величин.

Полезный совет
Промахи – это дерзкие неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методологии эксперимента. Дабы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и детально расписывайте полученный итог.

Итог всякого измерения неминуемо сопровождается отклонением от правдивого значения. Вычислить погрешность измерения дозволено несколькими методами в зависимости от ее типа, скажем, статистическими способами определения доверительного промежутка, среднеквадратического отклонения и пр.

Инструкция

1. Существует несколько причин, по которым появляются погрешности измерений . Это приборная неточность, несовершенство методологии, а также ошибки, вызванные невнимательностью оператора, проводящего замеры. Помимо того, зачастую за правдивое значение параметра принимают его действительную величину, которая на самом деле является лишь особенно возможной, исходя из обзора статистической выборки итогов серии экспериментов.

2. Погрешность – это мера отклонения измеряемого параметра от его правдивого значения. Согласно способу Корнфельда, определяют доверительный промежуток, тот, что гарантирует определенную степень безопасности. При этом находят так называемые доверительные пределы, в которых колеблется величина, а погрешность вычисляют как полусумму этих значений:? = (xmax – xmin)/2.

3. Это интервальная оценка погрешности , которую имеет толк проводить при маленьком объеме статистической выборки. Точечная оценка заключается в вычислении математического ожидания и среднеквадратического отклонения.

4. Математическое ожидание представляет собой интегральную сумму ряда произведений 2-х параметров слежений. Это, собственно, значения измеряемой величины и ее вероятности в этих точках:М = ?xi pi.

5. Классическая формула для вычисления среднеквадратического отклонения полагает расчет среднего значения анализируемой последовательности значений измеряемой величины, а также рассматривает объем серии проведенных экспериментов:? = ?(?(xi – xср)?/(n – 1)).

6. По методу выражения выделяют также безусловную, относительную и приведенную погрешность. Безусловная погрешность выражается в тех же единицах, что и измеряемая величина, и равна разности между ее расчетным и правдивым значением:?x = x1 – x0.

7. Относительная погрешность измерения связана с безусловной, впрочем является больше высокоэффективной. Она не имеет размерности, изредка выражается в процентах. Ее величина равна отношению безусловной погрешности к правдивому либо расчетному значению измеряемого параметра:?x = ?x/x0 либо?x = ?x/x1.

8. Приведенная погрешность выражается отношением между безусловной погрешностью и некоторым условно принятым значением x, которое является постоянным для всех измерений и определяется по градуировке шкалы прибора. Если шкала начинается с нуля (односторонняя), то это нормирующее значение равно ее верхнему пределу, а если двусторонняя – ширине каждого ее диапазона:? = ?x/xn.

Самоконтроль при диабете считается значимым компонентом лечения. Для измерения сахара крови в домашних условиях применяется глюкометр. Возможная погрешность у этого прибора выше, чем у лабораторных анализаторов гликемии.


Измерение сахара крови нужно для оценки результативности лечения диабета и для коррекции дозы препаратов. От назначенной терапии зависит то, сколько раз в месяц понадобится мерить сахар. Изредка забор крови на обзор необходим неоднократно в течение дня, изредка довольно 1-2 раз в неделю. Самоконтроль исключительно нужен беременным и больным 1 типом диабета.

Допустимая погрешность у глюкометра по мировым стандартам

Глюкометр не считается высокоточным прибором. Он предуготовлен только для ориентировочного определения концентрации сахара в крови. Возможная погрешность у глюкометра по мировым эталонам составляет 20% при гликемии больше 4,2 ммоль/л. Скажем, если при самоконтроле зафиксирован ярус сахара 5 ммоль/л, то настоящее значение концентрации находится в интервале от 4 до 6 ммоль/л. Возможная погрешность у глюкометра в стандартных условиях измеряется в процентах, а не в ммоль/л. Чем выше показатели, тем огромнее погрешность в безусловных числах. Скажем, если сахар крови достигает около 10 ммоль/л, то оплошность не превышает 2 ммоль/л, а если сахар – около 20 ммоль/л, то разница с итогом лабораторного измерения может быть до 4 ммоль/л. В большинстве случаев глюкометр завышает показатели гликемии.Эталоны допускают превышение заявленной погрешности измерения в 5% случаев. Это значит, что всякое двадцатое изыскание может значительно искажать итоги.

Допустимая погрешность у глюкометров различных фирм

Глюкометры подлежат непременной сертификации. В сопровождающих прибор документах обыкновенно указаны цифры возможной погрешности измерений. Если этого пункта нет в инструкции, то погрешность соответствует 20%. Некоторые изготовители глюкометров уделяют специальное внимание точности измерений. Существуют приборы европейских фирм, которые имеют возможную погрешность поменьше 20%. Лучший показатель на сегодняшний день составляет 10-15%.

Погрешность у глюкометра при самоконтроле

Допустимая погрешность измерения характеризует работу прибора. На точность изыскания влияют и некоторые другие факторы. Ненормально подготовленная кожа, слишком малый либо огромный объем полученной капли крови, недопустимый температурный режим – все это может приводить к ошибкам. Только в том случае, если все правила самоконтроля соблюдаются, дозволено рассчитывать на заявленную возможную погрешность изыскания. Правила самоконтроля с поддержкой глюкометра дозволено узнать у лечащего доктора.Точность глюкометра дозволено проверить в сервисном центре. Гарантийные обязательства изготовителей предусматривают бесплатные консультации и устранение неполадок.

Допустим, что точная ширина стола – А=384 мм, а мы, измерив ее, получили а=381 мм. Модуль разности между точным значением измеряемой величины и ее приближенным значением называется абсолютной погрешностью . В данном примере абсолютная погрешность 3 мм. Но на практике мы никогда не знаем точного значения измеряемой величины, поэтому не можем точно знать абсолютную погрешность.

Но обычно мы знаем точность измерительных приборов, опыт наблюдателя, производящего измерения и т.д. Это дает возможность составить представление об абсолютной погрешности измерения. Если, например, мы рулеткой измеряем длину комнаты, то нам нетрудно учесть метры и сантиметры, но вряд ли мы сможем учесть миллиметры. Да в этом и нет надобности. Поэтому мы сознательно допускаем ошибку в пределах 1 см. абсолютная погрешность длины комнаты меньше 1 см. Измеряя длину какого-либо отрезка миллиметровой линейкой, мы имеем право утверждать, что погрешность измерения не превышает 1 мм.

Абсолютная погрешность e а приближенного числа а дает возможность установить границы, в которых лежит точное число А:

Абсолютная погрешность не является достаточным показателем качества измерения и не характеризует точность вычислений или измерений. Если известно, что, измерив некоторую длину, мы получили абсолютную погрешность в 1 см, то никаких заключений о том, хорошо или плохо мы измеряли, сделать нельзя. Если мы измеряли длину карандаша в 15 см и ошиблись на 1 см, наше измерение никуда не годится. Если же мы измеряли 20-метровый коридор и ошиблись всего на 1 см, то наше измерение – образец точности. Важна не только сама абсолютная погрешность, но и та доля, которую она составляет от измеренной величины . В первом примере абс. погрешность 1 см составляет 1/15 долю измеряемой величины или 7%, во втором – 1/2000 или 0.05%. Второе измерение значительно лучше.

Относительной погрешностью называют отношение абсолютной погрешности к абсолютному значению приближенной величины:

В отличие от абсолютной погрешности, которая обычно есть величина размерная, относительная погрешность всегда есть величина безразмерная. Обычно ее выражают в %.

Пример

При измерении длины в 5 см допущена абсолютная погрешность в 0.1 см. Какова относительная погрешность? (Ответ 2%)

При подсчете числа жителей города, которое оказалось равным 2 000 000, допущена погрешность 100 человек. Какова относительная погрешность? (Ответ 0.005%)

Результат всякого измерения выражается числом, лишь приблизительно характеризующим измеряемую величину. Поэтому при вычислениях мы имеем дело с приближенными числами. При записи приближенных чисел принимается, что последняя цифра справа характеризует величину абсолютной погрешности.


Например, если записано 12.45, то это не значит, что величина, характеризуемая этим числом, не содержит тысячных долей. Можно утверждать, что тысячные доли при измерении не учитывались, следовательно, абсолютная погрешность меньше половины единицы последнего разряда: . Аналогично, относительно приближенного числа 1.283, можно сказать, что абсолютная погрешность меньше 0.0005: .

Приближенные числа принято записывать так, чтобы абсолютная погрешность не превышала единицы последнего десятичного разряда . Или, иначе говоря, абсолютная погрешность приближенного числа характеризуется числом десятичных знаков после запятой .

Как же быть, если при тщательном измерении какой-нибудь величины получится, что она содержит целую единицу, 2 десятых, 5 сотых, не содержит тысячных, а десятитысячные не поддаются учету? Если записать 1.25, то в этой записи тысячные не учтены, тогда как на самом деле мы уверены, что их нет. В таком случае принято ставить на их месте 0, – надо писать 1.250. Таким образом, числа 1.25 и 1.250 обозначают не одно и то же. Первое – содержит тысячные; мы только не знаем, сколько именно. Второе – тысячных не содержит, о десятитысячных ничего сказать нельзя.

Сложнее приходится при записи больших приближенных чисел. Пусть число жителей деревни равно 2000 человек, а в городе приблизительно 457 000 жителей. Причем относительно города в тысячах мы уверены, но допускаем погрешность в сотнях и десятках. В первом случае нули в конце числа указывают на отсутствие сотен, десятков и единиц, такие нули мы назовем значащими ; во втором случае нули указывают на наше незнание числа сотен, десятков и единиц. Такие нули мы назовем незначащими . При записи приближенного числа, содержащего нули надо дополнительно оговаривать их значимость. Обычно нули – незначащие. Иногда на незначимость нулей можно указывать, записывая число в экспоненциальном виде (457*10 3).

Сравним точность двух приближенных чисел 1362.3 и 2.37. В первом абсолютная погрешность не превосходит 0.1, во втором – 0.01. Поэтому второе число выглядит более точным, чем первое.

Подсчитаем относительную погрешность. Для первого числа ; для второго . Второе число значительно (почти в 100 раз) менее точно, чем первое. Получается это потому, что в первом числе дано 5 верных (значащих) цифр, тогда как во втором – только 3.

Все цифры приближенного числа, в которых мы уверены, будем называть верными (значащими) цифрами. Нули сразу справа после запятой не бывают значащими, они лишь указывают на порядок стоящих правее значащих цифр. Нули в крайних правых позициях числа могут быть как значащими, так и не значащими. Например, каждое из следующих чисел имеет 3 значащие цифры: 283*10 5 , 200*10 2 , 22.5, 0.0811, 2.10, 0.0000458.

Пример

Сколько значащих (верных) цифр в следующих числах:

0.75 (2), 12.050 (5), 1875*10 5 (4), 0.06*10 9 (1)

Оценить относительную погрешность следующих приближенных чисел:

нули значащие: 21000 (0.005%),

Нетрудно заметить, что для примерной оценки относительной погрешности числа достаточно подсчитать количество значащих цифр. Для числа, имеющего только одну значащую цифру относительная погрешность около 10%;

с 2-мя значащими цифрами – 1%;

с 3-мя значащими цифрами – 0.1%;

с 4-мя значащими цифрами – 0.01% и т.д.

При вычислениях с приближенными числами нас будет интересовать вопрос: как, исходя из данных приближенных чисел, получить ответ с нужной относительной погрешностью.

Часто при этом все исходные данные приходится брать с одной и той же погрешностью, именно с погрешностью наименее точного из данных чисел. Поэтому часто приходится более точное число заменять менее точным – округлять.

округление до десятых 27.136 » 27.1,

округление до целых 32.8 » 33.

Правило округления: Если крайняя левая из отбрасываемых при округлении цифр меньше 5, то последнюю сохраняемую цифру не изменяют; если крайняя левая из отбрасываемых цифр больше 5 или если она равна 5, то последнюю сохраняемую цифру увеличивают на 1.

Пример

округлить до десятых 17.96 (18.0)

округлить до сотых 14.127 (14.13)

округлить, сохранив 3 верные цифры: 83.501 (83.5), 728.21 (728), 0.0168835 (0.01688).

Инструкция

В первую очередь, проведите несколько измерений прибором одной и той же величины, чтобы иметь возможность действительное значение. Чем больше будет проведено измерений, тем точнее будет результат. Например, взвесьте на электронных весах. Допустим, вы получили результаты 0,106, 0,111, 0,098 кг.

Теперь посчитайте действительное значение величины (действительное, поскольку истинное найти невозможно). Для этого сложите полученные результаты и разделите их на количество измерений, то есть найдите среднее арифметическое. В примере действительное значение будет равно (0,106+0,111+0,098)/3=0,105.

Источники:

  • как найти погрешность измерений

Неотъемлемой частью любого измерения является некоторая погрешность . Она представляет собой качественную характеристику точности проведенного исследования. По форме представления она может быть абсолютной и относительной.

Вам понадобится

  • - калькулятор.

Инструкция

Вторые возникают от влияния причин, и случайный характер. К ним можно отнести неправильное округление при подсчете показаний и влияние . Если такие ошибки значительно меньше, чем деления шкалы этого прибора измерения, то в качестве абсолютной погрешности целесообразно взять половину деления.

Промах или грубая погрешность представляет собой результат наблюдения, который резко отличается от всех остальных.

Абсолютная погрешность приближенного числового значения – это разность между результатом, в ходе измерения и истинным значением измеряемой величины. Истинное или действительное значение отражает исследуемую физическую величину. Эта погрешность является самой простой количественной мерой ошибки. Её можно рассчитать по следующей формуле: ∆Х = Хисл - Хист. Она может принимать положительное и отрицательное значение. Для большего понимания рассмотрим . В школе 1205 учащихся, при округлении до 1200 абсолютная погрешность равняется: ∆ = 1200 - 1205 = 5.

Существуют определенные расчета погрешности величин. Во-первых, абсолютная погрешность суммы двух независимых величин равна сумме их абсолютных погрешностей: ∆(Х+Y) = ∆Х+∆Y. Аналогичный подход применим для разности двух погрешностей. Можно воспользоваться формулой: ∆(Х-Y) = ∆Х+∆Y.

Источники:

  • как определить абсолютную погрешность

Измерения физических величин всегда сопровождаются той или иной погрешностью . Она представляет собой отклонение результатов измерения от истинного значения измеряемой величины.

Вам понадобится

  • -измерительный прибор:
  • -калькулятор.

Инструкция

Погрешности могут возникнуть в результате влияния различных факторов. Среди них можно выделить несовершенство средств или методов измерения, неточности при их изготовлении, несоблюдение специальных условий при проведении исследования.

Существует несколько классификаций . По форме представления они могут быть абсолютными, относительными и приведенными. Первые представляют собой разность между исчисленным и действительным значением величины. Выражаются в единицах измеряемого явления и находятся по формуле:∆х = хисл- хист. Вторые определяются отношением абсолютных погрешностей к величине истинного значения показателя.Формула расчета имеет вид:δ = ∆х/хист. Измеряется в процентах или долях.

Приведенная погрешность измерительного прибора находится как отношение ∆х к нормирующему значению хн. В зависимости типа прибора оно принимается либо равным пределу измерений, либо отнесено к их определенному диапазону.

По условиям возникновения различают основные и дополнительные. Если измерения проводились в нормальных условиях, то возникает первый вид. Отклонения, обусловленные выходом значений за пределы нормальных, является дополнительной. Для ее оценки в документации обычно устанавливают нормы, в пределах которых может изменяться величина при нарушении условий проведения измерений.

Также погрешности физических измерений подразделяются на систематические, случайные и грубые. Первые вызываются факторами, которые действуют при многократном повторении измерений. Вторые возникают от влияния причин, и характер. Промах представляет собой результат наблюдения, который резко отличается от всех остальных.

В зависимости от характера измеряемой величины могут использоваться различные способы измерения погрешности. Первый из них это метод Корнфельда. Он основан на исчислении доверительного интервала в пределах от минимального до максимального результата. Погрешность в этом случае будет представлять собой половину разности этих результатов: ∆х = (хmax-xmin)/2. Еще один из способов – это расчет средней квадратической погрешности.

Измерения могут проводиться с разной степенью точности. При этом абсолютно точными не бывают даже прецизионные приборы. Абсолютная и относительная погрешности могут быть малы, но в реальности они есть практически всегда. Разница между приближенным и точным значениями некой величины называется абсолютной погрешностью . При этом отклонение может быть как в большую, так и в меньшую сторону.

Вам понадобится

  • - данные измерений;
  • - калькулятор.

Инструкция

Перед тем как рассчитывать абсолютную погрешность, примите за исходные данные несколько постулатов. Исключите грубые погрешности. Примите, что необходимые поправки уже вычислены и внесены в результат. Такой поправкой может быть, перенос исходной точки измерений.

Примите в качестве исходного положения то, что и учтены случайные погрешности. При этом подразумевается, что они меньше систематических, то есть абсолютной и относительной, характерных именно для этого прибора.

Случайные погрешности влияют на результат даже высокоточных измерений. Поэтому любой результат будет более или менее приближенным к абсолютному, но всегда будут расхождения. Определите этот интервал. Его можно выразить формулой (Xизм- ΔХ)≤Хизм ≤ (Хизм+ΔХ).

Определите величину, максимально приближенную к значению. В измерениях берется арифметическое, которое можно по формуле, на рисунке. Примите результат за истинную величину. Во многих случаях в качестве точного принимается показание эталонного прибора.

Зная истинную величину , вы можете найти абсолютную погрешность, необходимо учитывать при всех последующих измерениях. Найдите величину Х1 – данные конкретного измерения. Определите разность ΔХ, отняв от большего меньшее. При определении погрешности учитывается только модуль этой разности.

Обратите внимание

Как правило, на практике абсолютно точное измерение провести не удается. Поэтому за эталонную величину принимается предельная погрешность. Она представляет собой максимальное значение модуля абсолютной погрешности.

Полезный совет

В практических измерениях за величину абсолютной погрешности обычно принимается половина наименьшей цены деления. При действиях с числами за абсолютную погрешность принимается половина значения цифры, которая находится в следующим за точными цифрами разряде.

Для определения класса точности прибора более важным бывает отношение абсолютной погрешности к результату измерений или к длине шкалы.

Погрешности измерений связаны с несовершенством приборов, инструментов, методики. Точность зависит также от внимательности и состояния экспериментатора. Погрешности разделяются на абсолютные, относительные и приведенные.

Инструкция

Пусть однократное измерение величины дало результат x. Истинное значение обозначено за x0. Тогда абсолютная погрешность Δx=|x-x0|. Она оценивает абсолютную . Абсолютная погрешность складывается из трех составляющих: случайных погрешностей, систематических погрешностей и промахов. Обычно при измерении прибором берут в качестве погрешности половину цены деления. Для миллиметровой линейки это будет 0,5 мм.

Истинное значение измеряемой величины в промежутке (x-Δx ; x+Δx). Короче это записывается как x0=x±Δx. Важно измерять x и Δx в одних и тех же единицах измерения и записывать в одном и том же формате , например, целая часть и три запятой. Итак, абсолютная погрешность дает границы интервала, в котором с некоторой вероятностью находится истинное значение.

Измерения прямые и косвенные. В прямых измерениях сразу замеряется искомая величина соответствующим прибором. Например, тела линейкой, напряжение – вольтметром. При косвенных измерениях величина находится по формуле зависимости между ней и замеряемыми величинами.

Если результат представляет собой зависимость от трех непосредственно измеряемых величин, имеющих погрешности Δx1, Δx2, Δx3, то погрешность косвенного измерения ΔF=√[(Δx1 ∂F/∂x1)²+(Δx2 ∂F/∂x2)²+(Δx3 ∂F/∂x3)²]. Здесь ∂F/∂x(i) – частные производные от функции по каждой из непосредственно измеряемых величин.

Полезный совет

Промахи – это грубые неточности измерений, возникающие при неисправности приборов, невнимательности экспериментатора, нарушении методики эксперимента. Чтобы уменьшить вероятность таких промахов, при проведении измерений будьте внимательны и подробно расписывайте полученный результат.

Источники:

Результат любого измерения неизбежно сопровождается отклонением от истинного значения. Вычислить погрешность измерения можно несколькими способами в зависимости от ее типа, например, статистическими методами определения доверительного интервала, среднеквадратического отклонения и пр.

Результат измерений физической величины всегда отличается от истинного значения на некоторую величину, которая называется погрешностью

КЛАССИФИКАЦИЯ:

1. По способу выражения: абсолютные, приведенные и относительные

2. По источнику возникновения: методические и инструментальные.

3. По условиям и причинам возникновения: основные и дополнительные

4. По характеру изменения: систематические и случайные.

5. По зависимости от входной измеряемой величины: аддитивные и мультипликативные

6. По зависимости от инерционности: статические и динамические.

13. Абсолютная, относительная и приведенная погрешности.

Абсолютная погреш­ность - это разность между измеренным и дейст­вительным значениями измеряемой величины:

где А изм, А - измеряемое и действительное значения; ΔА - абсолютная погрешность.

Абсолютную погрешность выражают в единицах измеряемой величины. Абсолютную погрешность, взятую с обратным знаком, называют поправкой.

Относительная погрешность р равна отношению абсолютной погрешности ΔА к действительному значению измеряемой величины и выражается в про­центах:

Приведенная погрешность измерительного прибо­ра - это отношение абсолютной погрешности к но­минальному значению. Номинальное значение для прибора с односторонней шкалой равно верхнему пределу измерения, для прибора с двусторонней шкалой (с нулем посередине) - арифметической сум­ме верхних пределов измерения:

пр. ном.

14. Методическая, инструментальная, систематическая и случайная погрешности.

Погрешность метода обусловлена несовершенством применяемого метода измерения, неточностью формул и математических зависимостей, описывающий данный метод измерения, а также влиянием средства измерения на объект свойства которого изменяются.

Инструментальная погрешность (погрешность инструмента) обусловлена особенностью конструкции измерительного устройства, неточностью градуировки, шкалы, а также неправильностью установки измерительного устройства.

Инструментальная погрешность, как правило, указывается в паспорте на средство измерения и может быть оценена в числовом выражении.

Систематическая погрешность - постоянная или закономерно изменяющаяся погрешность при повторных измерениях одной и той же величины в одинаковых условиях измерения. Например, погрешность, возникающая при измерении сопротивления ампервольтметром, обусловленная разрядом батареи питания.

Случайная погрешность - погрешность измерения, характер изменения которой при повторных измерениях одной и той же величины в одинаковых условиях случайный. Например, погрешность отсчета при нескольких повторных измерениях.

Причиной случайной погрешности является одновременной действие многих случайных факторов, каждый из которых в отдельности мало влияет.

Случайная погрешность может быть оценена и частично снижена путём правильной обработки методами математической статистики, а также методами вероятности.

15. Основная и дополнительная, статическая и динамическая погрешности.

Основная погрешность - погрешность, возникающая в нормальных условиях применения средства измерения (температура, влажность, напряжение питания и др.), которые нормируются и указываются в стандартах или технических условиях.

Дополнительная погрешность обуславливается отклонением одной или нескольких влияющих величин от нормального значения. Например, изменение температуры окружающей среды, изменение влажности, колебания напряжения питающей сети. Значение дополнительной погрешности нормируется и указывается в технической документации на средства измерения.

Статическая погрешность - погрешность при измерении постоянной по времени величины. Например, погрешность измерения неизменного за время измерения напряжения постоянного тока.

Динамическая погрешность - погрешность измерения изменяющейся во времени величины. Например, погрешность измерения коммутируемого напряжения постоянного тока, обусловленная переходными процессами при коммутации, а также ограниченным быстродействием измерительного прибора.


Пусть некоторая случайная величина a измеряется n раз в одинаковых условиях. Результаты измерений дали набор n различных чисел

Абсолютная погрешность - величина размерная. Среди n значений абсолютных погрешностей обязательно встречаются как положительные, так и отрицательные.

За наиболее вероятное значение величины а обычно принимают среднее арифметическое значение результатов измерений

.

Чем больше число измерений, тем ближе среднее значение к истинному.

Абсолютной погрешностью i

.

Относительной погрешностью i -го измерения называется величина

Относительная погрешность - величина безразмерная. Обычноотносительная погрешность выражается в процентах, для этого e i домножают на 100%. Величина относительной погрешности характеризует точность измерения.

Средняя абсолютная погрешность определяется так:

.

Подчеркнем необходимость суммирования абсолютных значений (модулей) величин Dа i . В противном случае получится тождественный нулевой результат.

Средней относительной погрешностью называется величина

.

При большом числе измерений .

Относительную погрешность можно рассматривать как значение погрешности, приходящееся на единицу измеряемой величины.

О точности измерений судят на основании сравнения погрешностей результатов измерений. Поэтому погрешности измерений выражают в такой форме, чтобы для оценки точности достаточно было сопоставить только одни погрешности результатов, не сравнивая при этом размеры измеряемых объектов или зная эти размеры весьма приближенно. Из практики известно, что абсолютная погрешность измерения угла не зависит от значения угла, а абсолютная погрешность измерения длины зависит от значения длины. Чем больше значение длины, тем при данном методе и условиях измерения абсолютная погрешность будет больше. Следовательно, по абсолютной погрешности результата о точности измерения угла судить можно, а о точности измерения длины нельзя. Выражение погрешности в относительной форме позволяет сравнивать в известных случаях точность угловых и линейных измерений.


Основные понятия теории вероятности. Случайная погрешность.

Случайной погрешностью называют составляющую погрешности измерений, изменяющуюся случайным образом при повторных измерениях одной и той же величины.

При проведении с одинаковой тщательностью и в одинаковых условиях повторных измерений одной и той же постоянной неизменяющейся величины мы получаем результаты измерений – некоторые из них отличаются друг от друга, а некоторые совпадают. Такие расхождения в результатах измерений говорят о наличии в них случайных составляющих погрешности.

Случайная погрешность возникает при одновременном воздействии многих источников, каждый из которых сам по себе оказывает незаметное влияние на результат измерения, но суммарное воздействие всех источников может оказаться достаточно сильным.

Случайные ошибки являются неизбежным следствием любых измерений и обусловлены:

а) неточностью отсчетов по шкале приборов и инструментов;

б) не идентичностью условий повторных измерений;

в) беспорядочными изменениями внешних условий (температуры, давления, силового поля и т.д.), которые невозможно контролировать;

г) всеми другими воздействиями на измерения, причины которых нам неизвестны. Величину случайной погрешности можно свести к минимуму путем многократного повторения эксперимента и соответствующей математической обработки полученных результатов.

Случайная ошибка может принимать различные по абсолютной величине значения, предсказать которые для данного акта измерения невозможно. Эта ошибка в равной степени может быть как положительной, так и отрицательной. Случайные ошибки всегда присутствуют в эксперименте. При отсутствии систематических ошибок они служат причиной разброса повторных измерений относительно истинного значения.

Допустим, что при помощи секундомера измеряют период колебаний маятника, причем измерение многократно повторяют. Погрешности пуска и остановки секундомера, ошибка в величине отсчета, небольшая неравномерность движения маятника – все это вызывает разброс результатов повторных измерений и поэтому может быть отнесено к категории случайных ошибок.

Если других ошибок нет, то одни результаты окажутся несколько завышенными, а другие несколько заниженными. Но если, помимо этого, часы еще и отстают, то все результаты будут занижены. Это уже систематическая ошибка.

Некоторые факторы могут вызвать одновременно и систематические и случайные ошибки. Так, включая и выключая секундомер, мы можем создать небольшой нерегулярный разброс моментов пуска и остановки часов относительно движения маятника и внести тем самым случайную ошибку. Но если к тому же мы каждый раз торопимся включить секундомер и несколько запаздываем выключить его, то это приведет к систематической ошибке.

Случайные погрешности вызываются ошибкой параллакса при отсчете делений шкалы прибора, сотрясении фундамента здания, влиянием незначительного движения воздуха и т.п.

Хотя исключить случайные погрешности отдельных измерений невозможно, математическая теория случайных явлений позволяем уменьшить влияние этих погрешностей на окончательный результат измерений. Ниже будет показано, что для этого необходимо произвести не одно, а несколько измерений, причем, чем меньшее значение погрешности мы хотим получить, тем больше измерений нужно провести.

В связи с тем, что возникновение случайных погрешностей неизбежно и неустранимо, основной задачей всякого процесса измерения является доведение погрешностей до минимума.

В основе теории погрешностей лежат два основных предположения, подтверждаемых опытом:

1. При большом числе измерений случайные погрешности одинаковой величины, но разного знака, т.е погрешности в сторону увеличения и уменьшения результата встречаются достаточно часто.

2. Большие по абсолютной величине погрешности встречаются реже, чем малые, таким образом, вероятность возникновения погрешности уменьшается с ростом ее величины.

Поведение случайных величин описывают статистические закономерности, которые являются предметом теории вероятностей. Статистическим определением вероятности w i события i является отношение

где n - общее число опытов, n i - число опытов, в которых событие i произошло. При этом общее число опытов должно быть очень велико (n ®¥). При большом числе измерений случайные ошибки подчиняются нормальному распределению (распределение Гаусса), основными признаками которого являются следующие:

1. Чем больше отклонение значения измеренной величины от истинного, тем меньше вероятность такого результата.

2. Отклонения в обе стороны от истинного значения равновероятны.

Из приведенных выше допущений вытекает, что для уменьшения влияния случайных ошибок необходимо произвести измерение данной величины несколько раз. Предположим, что мы измеряем некоторую величину x. Пусть произведено n измерений: x 1 , x 2 , ... x n - одним и тем же методом и с одинаковой тщательностью. Можно ожидать, что число dn полученных результатов, которые лежат в некотором достаточно узком интервале от x до x + dx , должно быть пропорционально:

Величине взятого интервала dx ;

Общему числу измерений n .

Вероятность dw (x ) того, что некоторое значение x лежит в интервале от x до x + dx, определяется следующим образом:

(при числе измерений n ®¥).

Функция f (х ) называется функцией распределения или плотностью вероятности.

В качестве постулата теории ошибок принимается, что результаты прямых измерений и их случайные погрешности при большом их количестве подчиняются закону нормального распределения.

Найденная Гауссом функция распределения непрерывной случайной величины x имеет следующий вид:

, где mиs - параметры распределения.

Параметрmнормального распределения равен среднему значению áx ñ случайной величины, которое при произвольной известной функции распределения определяется интегралом

.

Таким образом, величина m является наиболее вероятным значением измеряемой величины x, т.е. ее наилучшей оценкой.

Параметр s 2 нормального распределения равен дисперсии D случайной величины, которая в общем случае определяется следующим интегралом

.

Квадратный корень из дисперсии называется средним квадратическим отклонением случайной величины .

Среднее отклонение (погрешность) случайной величины ásñ определяется с помощью функции распределения следующим образом

Средняя погрешность измерений ásñ, вычисленная по функции распределения Гаусса, соотносится с величиной среднего квадратического отклонения s следующим образом:

< s> = 0,8s .

Параметры s и m связаны между собой следующим образом:

.

Это выражение позволяет находить среднее квадратическое отклонение s , если имеется кривая нормального распределения.

График функции Гаусса представлен на рисунках. Функция f (x ) симметрична относительно ординаты, проведенной в точке x = m; проходит через максимум в точке x = m и имеет перегиб в точках m ±s. Таким образом, дисперсия характеризует ширину функции распределения, или показывает, насколько широко разбросаны значения случайной величины относительно ее истинного значения. Чем точнее измерения, тем ближе к истинному значению результаты отдельных измерений, т.е. величина s - меньше. На рисунке A изображена функция f (x ) для трех значений s.

Площадь фигуры, ограниченной кривой f (x ) и вертикальными прямыми, проведенными из точек x 1 и x 2 (рис.Б), численно равна вероятности попадания результата измерения в интервал Dx = x 1 - x 2 , которая называется доверительной вероятностью. Площадь под всей кривой f (x ) равна вероятности попадания случайной величины в интервал от 0 до ¥, т.е.

,

так как вероятность достоверного события равна единице.

Используя нормальное распределение, теория ошибок ставит и решает две основные задачи. Первая - оценка точности проведенных измерений. Вторая - оценка точности среднего арифметического значения результатов измерений.5. Доверительный интервал. Коэффициент Стъюдента.

Теория вероятностей позволяет определить величину интервала, в котором с известной вероятностью w находятся результаты отдельных измерений. Эта вероятность называется доверительной вероятностью , а соответствующий интервал (<x > ± Dx ) w называется доверительным интервалом. Доверительная вероятность также равна относительной доле результатов, оказавшихся внутри доверительного интервала.

Если число измерений n достаточно велико, то доверительная вероятность выражает долю из общего числа n тех измерений, в которых измеренная величина оказалась в пределах доверительного интервала. Каждой доверительной вероятности w соответствует свой доверительный интервал.w 2 80%. Чем шире доверительный интервал, тем больше вероятность получить результат внутри этого интервала. В теории вероятностей устанавливается количественная связь между величиной доверительного интервала, доверительной вероятностью и числом измерений.

Если в качестве доверительного интервала выбрать интервал, соответствующий средней погрешности, то есть Da = áDа ñ, то при достаточно большом числе измеренийон соответствует доверительной вероятности w 60%. При уменьшении числа измерений доверительная вероятность, соответствующая такому доверительному интервалу (áа ñ ± áDа ñ), уменьшается.

Таким образом, для оценки доверительного интервала случайной величины можно пользоваться величиной средней погрешностиáDа ñ.

Для характеристики величины случайной погрешности необходимо задать два числа, а именно, величину доверительного интервала и величину доверительной вероятности. Указание одной только величины погрешности без соответствующей ей доверительной вероятности в значительной мере лишено смысла.

Если известна средняя погрешность измерения ásñ, доверительный интервал, записанный в виде (<x > ± ásñ) w , определен с доверительной вероятностью w = 0,57.

Если известно среднее квадратическое отклонение s распределения результатов измерений, указанный интервал имеет вид (<x t w s) w , где t w - коэффициент, зависящий от величины доверительной вероятности и рассчитывающийся по распределению Гаусса.

Наиболее часто используемые величиныDx приведены в таблице 1.

Loading...Loading...