Адгезия применение. Адгезия: что это такое, для чего нужна, как её улучшить. Диффузионная теория адгезии

  • Адгезия (от лат. adhaesio - прилипание) в физике - сцепление поверхностей разнородных твёрдых и/или жидких тел. Адгезия обусловлена межмолекулярными взаимодействиями (Ван-дер-Ваальсовыми, полярными, иногда - взаимной диффузией) в поверхностном слое и характеризуется удельной работой, необходимой для разделения поверхностей. В некоторых случаях адгезия может оказаться сильнее, чем когезия, то есть сцепление внутри однородного материала, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.

    Адгезия существенно влияет на природу трения соприкасающихся поверхностей: так, при взаимодействии поверхностей с низкой адгезией трение минимально. В качестве примера можно привести политетрафторэтилен (тефлон), который в силу низкого значения адгезии в сочетании с большинством материалов обладает низким коэффициентом трения. Некоторые вещества со слоистой кристаллической решёткой (графит, дисульфид молибдена), характеризующиеся одновременно низкими значениями адгезии и когезии, применяются в качестве твёрдых смазок.

    Наиболее известные адгезионные эффекты - капиллярность, смачиваемость/несмачиваемость, поверхностное натяжение, мениск жидкости в узком капилляре, трение покоя двух абсолютно гладких поверхностей. Критерием адгезии в некоторых случаях может быть время отрыва слоя материала определенного размера от другого материала в ламинарном потоке жидкости.

    Адгезия имеет место в процессах склеивания, пайки, сварки, нанесения покрытий. Адгезия матрицы и наполнителя композитов (композиционных материалов) является также одним из важнейших факторов, влияющих на их прочность.

    В биологии клеточная адгезия - не просто соединение клеток между собой, а такое их соединение, которое приводит к формированию определённых правильных типов гистологических структур, специфичных для данных типов клеток. Специфичность клеточной адгезии определяется наличием на поверхности клеток белков клеточной адгезии - интегринов, кадгеринов и др. Например, адгезия тромбоцитов на базальной мембране и на коллагеновых волокнах повреждённой сосудистой стенки.

    В антикоррозионной защите адгезия лакокрасочного материала к поверхности - наиболее важный параметр, влияющий на долговечность покрытия. Адгезия – прилипание лакокрасочного материала к окрашиваемой поверхности, одна из основных характеристик промышленных ЛКМ. Адгезия лакокрасочных материалов может иметь механическую, химическую или электромагнитную природу и измеряется силой отрыва лакокрасочного покрытия на единицу площади подложки. Хорошая адгезия лакокрасочного материала к окрашиваемой поверхности может быть обеспечена лишь при тщательной очистке поверхности от грязи, жира, ржавчины и прочих загрязнений. Также для обеспечения адгезии необходимо достичь заданной толщины покрытия, для чего используются толщиномеры мокрого слоя. Для оценки адгезии/когезии приняты и утверждены критерии.

Адгезия - это связь между приведенными в контакт разнородными поверхностями. Причины возникновения адгезионной связи - действие межмолекулярных сил или сил химического взаимодействия. Адгезия обусловливает склеивание твердых тел - субстратов - с помощью клеющего вещества - адгезива , а также связь защитного или декоративного лакокрасочного покрытия с основой. Адгезия играет также важную роль в процессе сухого трения. В случае одинаковой природы соприкасающихся поверхностей следует говорить об ауто гезии (автогезии), которая лежит в основе многих процессов переработки полимерных материалов. При длительном соприкосновении одинаковых поверхностей и установлении в зоне контакта структуры, характерной для любой точки в объеме тела, прочность аутогезионного соединения приближается к когезионной прочности материала (см. когезия ).

На межфазной поверхности двух жидкостей или жидкости и твердого тела адгезия может достигать предельно высокого значения, так как контакт между поверхностями в этом случае полный. Адгезия двух твердых тел из-за неровностей поверхностей и соприкосновения лишь в отдельных точках, как правило, мала. Однако высокая адгезия может быть достигнута и в этом случае, если поверхностные слои контактирующих тел находятся в пластическом или высокоэластичном состоянии и прижаты друг к другу с достаточной силой.

Адгезия жидкости к жидкости или жидкости к твердому телу

С точки зрения термодинамики причина адгезии - уменьшение свободной энергии на единице поверхности адгезионного шва в изотермически обратимом процессе. Работа обратимого адгезионного отрыва W a определяется из уравнения :

W a = σ 1 + σ 2 – σ 12

где σ 1 и σ 2 – поверхностное натяжение на границе фаз соответственно 1 и 2 с окружающей средой (воздухом), а σ 12 - поверхностное натяжение на границе фаз 1 и 2 , между которыми имеет место адгезия.

Значение адгезии двух несмешивающихся жидкостей можно найти из уравнения, указанного выше, по легко определяемым значениям σ 1 , σ 2 и σ 12 . Наоборот, адгезия жидкости к поверхности твердого тела , вследствие невозможности непосредственного определения σ 1 твердого тела, может быть рассчитана только косвенным путем по формуле:

W a = σ 2 (1 + cos ϴ)

где σ 2 и ϴ - измеряемые величины соответственно поверхностного натяжения жидкости и равновесного краевого угла смачивания, образуемого жидкостью с поверхностью твердого тела. Из-за гистерезиса смачивания, не позволяющего точно определить краевой угол, по этому уравнению обычно получают только весьма приближенные значения. Кроме того, этим уравнением нельзя пользоваться в случае полного смачивания, когда cos ϴ = 1 .

Оба уравнения, приложимые в случае, когда хотя бы одна фаза жидкая, совершенно неприменимы для оценки прочности адгезионной связи между двумя твердыми телами, так как в последнем случае разрушение адгезионного соединения сопровождается различного рода необратимыми явлениями, обусловленными различными причинами: неупругими деформациями адгезива и субстрата , образованием в зоне адгезионного шва двойного электрического слоя, разрывом макромолекул, «вытаскиванием» продиффундировавших концов макромолекул одного полимера из слоя другого и др.

Адгезия полимеров друг к другу и к неполимерным субстратам

Почти все применяемые в практике адгезивы представляют собою полимерные системы или образуют в результате химических превращений, происходящих после нанесения адгезива на склеиваемые поверхности. К неполимерным адгезивам можно отнести только неорганические вещества типа цементов и припоев.

Методы определения адгезии и аутогезии:

  1. Метод одновременного отрыва одной части адгезионного соединения от другой по всей площади контакта;
  2. Метод постепенного расслаивания адгезионного соединения.

При первом способе разрушающая нагрузка может быть приложена в направлении, перпендикулярном плоскости контакта поверхностей (испытание на отрыв) или параллельном ей (испытание на сдвиг). Отношение силы, преодолеваемой при одновременном отрыве по всей площади контакта, к площади называется адгезионным давлением , давлением прилипания или прочностью адгезионной связи (н/м 2 , дин/см 2 , кгс/см 2). Метод отрыва дает наиболее прямую и точную характеристику прочности адгезионного соединения, однако применение его связано с некоторыми экспериментальными затруднениями, в частности с необходимостью строго центрированного приложения нагрузки к испытуемому образцу и обеспечения равномерного распределения напряжений по адгезионному шву.

Отношение сил, преодолеваемых при постепенном расслаивании образца, к ширине образца называется сопротивлением отслаиванию или сопротивлением расслаиванию (н/м, дин/см, гс/см); часто адгезию, определяемую при расслаивании, характеризуют работой, которую необходимо затратить на отделение адгезива от субстрата (дж/м 2 , эрг/см 2) (1 дж/м 2 = 1 н/м, 1 эрг/см 2 = 1 дин/см).

Определение адгезии расслаиванием более целесообразно в случае измерения прочности связи между тонкой гибкой пленкой и твердым субстратом, когда в условиях эксплуатации отслаивание пленки идет, как правило, от краев путем медленного углубления трещины. При адгезии двух жестких твердых тел более показателен метод отрыва, т. к. в этом случае при приложении достаточной силы может произойти практически одновременный отрыв по всей площади контакта.

Адгезиометр

Адгезию и аутогезию при испытании на отрыв, сдвиг и расслаивание можно определять на обычных динамометрах или на специальных . Для обеспечения полноты контакта адгезива и субстрата адгезив применяют в виде расплава, раствора в летучем растворителе или , который при образовании адгезионного соединения полимеризуется. Однако при отверждении, высыхании и полимеризации адгезив, как правило, претерпевает усадку, в результате чего на межфазной поверхности возникают тангенциальные напряжения, ослабляющие адгезионное соединение.

Напряжения эти могут быть в значительной мере устранены:

  • введением в клей наполнителей, пластификаторов,
  • в некоторых случаях термообработкой адгезионного соединения.

На определяемую при испытании прочность адгезионной связи существенным образом могут влиять:

  • размеры и конструкция испытуемого образца (в результате действия т. н. краевого эффекта ),
  • толщина слоя адгезива,
  • предыстория адгезионного соединения
  • и другие факторы.

О значениях прочности адгезии или аутогезии , можно говорить, конечно, лишь в случае, когда разрушение происходит по межфазной границе (адгезия) или в плоскости первоначального контакта (аутогезия). При разрушении образца по адгезиву получаемые значения характеризуют когезионную прочность полимера . Некоторые ученые считают, однако, что возможно только когезионное разрушение адгезионного соединения. Наблюдающийся адгезионный характер разрушения, по их мнению, лишь кажущийся, поскольку визуальное наблюдение или даже наблюдение с помощью оптического микроскопа не позволяет обнаружить на поверхности субстрата остающийся тончайший слой адгезива. Однако в последнее время и теоретически и экспериментально было показа но, что разрушение адгезионного соединения может носить самый разнообразный характер - адгезионный, когезионный, смешанный и микромозаичный.

О способах определения прочности адгезионной связи см. испытания лакокрасочных материалов и по крытий .

Теории адгезии

Механическая адгезия

Согласно этой концепции, адгезия осуществляется в результате затекания клея в поры и трещины поверхности субстрата и последующего отверждения клея ; если поры имеют неправильную форму и особенно если они расширяются от поверхности в глубь субстрата, образуются как бы «заклепки» , связывающие адгезив и субстрат. Естественно, что адгезив должен быть достаточно твердым, чтобы «заклепки» не выскальзывали из пор и щелей, в которые он затекает. Механическая адгезия возможна также в случае субстрата, пронизанного системой сквозных пор. Такое строение характерно, например, для тканей. Наконец, третий случай механической адгезии сводится к тому, что ворсинки, находящиеся на поверхности ткани, после нанесения и отверждения клея оказываются прочно внедренными в адгезив.

Несмотря на то что механическая адгезия в некоторых случаях безусловно играет существенную роль, только ею, по мнению большинства исследователей, нельзя объяснить все случаи склеивания, т. к. хорошо склеиваться могут и совершенно гладкие поверхности, не имеющие пор и трещин.

Молекулярная теория адгезии

Дебройном , адгезия обусловлена действием ван-дер-ваальсовых сил (дисперсионных сил, сил взаимодействия между постоянными или между постоянным и наведенным диполями), взаимодействием - диполь или образованием . Свою теорию адгезии Дебройн обосновал следующими фактами:

  1. Один и тот же адгезив может склеивать различные материалы;
  2. Химическое взаимодействие между адгезивом и субстратом вследствие их обычно инертной природы мало вероятно.

Дебройну принадлежит известное правило: прочные соединения образуются между адгезивом и субстратом, близкими по полярности. В приложении к полимерам молекулярная (или адсорбционная) теория получила развитие в работах Мак-Ларена . Адгезию полимеров по Мак-Ларену, можно разделить на две стадии:

  1. миграция больших молекул из раствора или расплава адгезива к поверхности субстрата в результате броуновского движения; при этом полярные группы или группы, способные образовывать водородную связь, приближаются к соответствующим группа субстрата;
  2. установление адсорбционного равновесия.

При расстоянии между молекулами адгезива и субстрата меньше 0,5 нм начинают действовать ван-дер-ваальсовы силы.

Согласно Мак-Ларену, в аморфном состоянии полимеры обладают большей адгезией, чем в кристаллическом. Чтобы активные участки молекулы адгезива продолжали контактировать с активными местами субстрата при высыхании клеящего раствора, что всегда сопровождается усадкой, адгезив должен иметь достаточно низкую . С другой стороны, он должен проявлять определенную стойкость при растяжении или сдвиге . Поэтому вязкость адгезива не должна быть слишком малой, а степень его полимеризации должна лежать в пределах 50-300 . При меньших степенях полимеризации адгезия невелика вследствие скольжения цепей, а при больших - адгезив слишком твердый и жесткий и адсорбция его молекул субстратом затруднена. Адгезив должен обладать также определенными диэлектрическими свойствами (полярностью), отвечающими таким же свойствам субстрата. Лучшей мерой полярности Мак-Ларен считает величину μ 2 /ε , где μ - дипольный момент молекулы вещества, а ε - диэлектрическая проницаемость.

Таким образом, по Мак-Ларену, адгезия - чисто поверхностный процесс, обусловленный адсорбцией определенных участков молекул адгезива поверхностью субстрата. Правильность своих представлений Мак-Ларен доказывает влиянием на адгезию ряда факторов (темпепатуры, полярности, природы, размера и формы молекул адгезива и др.). Мак-Ларен вывел зависимости, количественно описывающие адгезию. Так, для полимеров, содержащих карбоксильные группы , установлено, что прочность адгезионной связи (А ) зависит от концентрации этих групп:

A = k [ COOH] n

где [СООН] - концентрация карбоксильных групп в полимере; k и n - константы.

Долгое время оставалось неясным, могут ли межмолекулярные силы обеспечить наблюдаемую на опыте адгезию.

  • Во-первых, было показано, что при отслаивании полимерного адгезива от поверхности субстрата затрачивается работа на несколько порядков выше той, которая требуется для преодоления сил межмолекулярного взаимодействия.
  • Во-вторых, рядом исследователей была обнаружена зависимость работы адгезии от скорости отслаивания полимерного адгезива, в то время как в случае правильности адсорбционной теории эта работа, казалось бы, не должна зависеть от скорости раздвижения поверхностей, находящихся в контакте.

Однако проведенные в последнее время теоретические расчеты показали, что межмолекулярные силы могут обеспечить наблюдаемую на опыте прочность адгезионного взаимодействия даже в случае неполярных адгезива и субстрата. Несоответствие работы, расходуемой на отслаивание, работе, затрачиваемой против действия адгезионных сил , объясняется тем, что первая включает также работу деформации элементов адгезионного соединения. Наконец, зависимость работы адгезии от скорости расслаивания может быть удовлетворительно истолкована, если на этот случай распространить представления, объясняющие зависимость когезионной прочности материала от скорости деформации влиянием тепловых флуктуации на распад связей и релаксационными явлениями.

Электрическая теория адгезии

Авторами этой теории являются Дерягин и Кротова . Позднее аналогичные взгляды развивали Скиннер с сотрудниками (США). Свою теорию Дерягин и Кротова основывают на явлениях контактной электризации, происходящей при тесном соприкосновении двух диэлектриков или металла и диэлектрика. Основные положения этой теории заключаются в том, что система адгезив-субстрат отождествляется с конденсатором, а двойной электрический слой, возникающий при контакте двух разнородных поверхностей,- с обкладками конденсатора. При отслаивании адгезива от субстрата, или, что то же, раздвижении обкладок конденсатора, возникает разность электрических потенциалов, которая повышается с увеличением зазора между раздвигаемыми поверхностями до определенного предела, когда наступает разряд. Работу адгезии в этом случае можно приравнять к энергии конденсатора и определить по уравению (в системе СГС):

W a = 2πσ 2 h /ε a

где σ - поверхностная плотность электрических зарядов; h - разрядный промежуток (толщина зазора между обкладками); ε a - абсолютная диэлектрическая проницаемость среды.

При медленном раздвижении заряды успевают в значительной мере стечь с обкладок конденсатора. Вследствие этого нейтрализация первоначальных зарядов успевает закончиться при малом разведении поверхностей и на разрушение адгезионного соединения затрачивается небольшая работа. При быстром раздвижении обкладок конденсатора заряды не успевают стечь и их высокая начальная плотность сохраняется вплоть до наступления газового разряда. Это обусловливает большие значения работы адгезии, поскольку действие сил притяжения разноименных электрических зарядов преодолевается на сравнительно больших расстояниях. Различным характером удаления заряда с образующихся при расслаивании поверхностей адгезив-воздух и субстрат-воздух авторы электрической теории и объясняют характерную зависимость работы адгезии от скорости расслаивания.

На возможность электрических явлений при расслаивании адгезионных соединений указывает ряд фактов:

  1. электризация образовавшихся поверхностей;
  2. появление в некоторых случаях расслаивания лавинного электрического разряда, сопровождающегося свечением и треском;
  3. изменение работы адгезии при замене среды, в которой производится расслаивание;
  4. уменьшение работы расслаивания при повышении давления окружающего газа и при его ионизации, что способствует удалению заряда с поверхности.

Наиболее прямым подтверждением явилось открытие явления электронной эмиссии, наблюдавшейся при отрыве пленок полимера от различных поверхностей. Значения работы адгезии, рассчитанные на основании измерения скорости эмитируемых электронов, удовлетворительно совпадали с экспериментальными результатами. Следует, однако, заметить, что электрические явления при разрушении адгезионных соединений проявляются лишь при совершенно сухих образцах и при больших скоростях расслаивания (не менее десятков см/сек).

Электрическая теория адгезии не может быть применена к ряду случаев адгезии полимеров друг к другу.

  1. Она не может удовлетворительно объяснить образование адгезионной связи между полимерами, близкими по своей природе. Действительно, двойной электрический слой может возникать только на границе контакта двух различных полимеров. Следовательно, прочность адгезионного соединения должна падать по мере сближения природы полимеров, приведенных в контакт. На самом деле этого не наблюдается.
  2. Неполярные полимеры, если исходить только из представлений электрической теории, не могут давать прочную связь, т. к. они не способны быть донорами и, следовательно, не могут образовывать двойной электрический слой. Между тем практические результаты опровергают эти рассуждения.
  3. Наполнение каучука сажей, способствуя высокой электрической проводимости саженаполненных смесей, должно было бы делать невозможной адгезию между ними. Однако адгезия этих смесей не только друг к другу, но и к металлам достаточно высока.
  4. Присутствие небольшого количества серы, вводимой для вулканизации в каучуки, не должно изменять адгезии, так как влияние такой прибавки на контактный потенциал незначительно. В действительности же после вулканизации способность к адгезии исчезает .

Диффузионная теория адгезии

Согласно этой теории, предложенной Воюцким для объяснения адгезии полимеров друг к другу, адгезия, как и аутогезия, обусловливается межмолекулярными силами, а диффузия цепных молекул или их сегментов обеспечивает максимально возможное для каждой системы взаимопроникновение макромолекул, что способствует увеличению молекулярного контакта. Отличительной чертой этой теории, особенно пригодной в случае адгезии полимера к полимеру, является то, что она исходит из основных особенностей макромолекул - цепного строения и гибкости . Следует заметить, что способностью к диффузии, как правило, обладают только молекулы адгезива. Однако если адгезив наносят в виде раствора, а полимерный субстрат способен набухать или растворяться в этом растворе, может происходить и заметная диффузия молекул субстрата в адгезив. Оба эти процесса приводят к исчезновению границы между фазами и к образованию спайки, представляющей постепенный переход от одного полимера к другому. Таким образом, адгезия полимеров рассматривается как объемное явление .

Совершенно очевидно также, что диффузия одного полимера в другой представляет собой явление растворения.

Взаиморастворимость полимеров , которая в основном определяется соотношением их полярностей, очень важна для адгезии, что вполне согласуется с известным правилом Дебройна. Однако заметная адгезия может наблюдаться и между несовместимыми, сильно различающимися по полярности полимерами, в результате т. н. локальной диффузии, или локального растворения.

Локальное растворение неполярного полимера в полярном можно объяснить неоднородностью микроструктуры полярного полимера, возникающей в результате того, что полимер, состоящий из цепей с полярными и неполярными участками достаточной протяженности, всегда претерпевает микрорасслаивание, подобное происходящему в смесях сильно различающихся по полярности полимеров. Такое локальное растворение вероятно в случае, когда диффундируют углеводородные цепи, т. к. в полярных полимерах объем неполярных участков обычно больше объема полярных групп. Этим и объясняется то, что неполярные эластомеры обычно проявляют заметную адгезию к полярным высокомолекулярным субстратам, в то время как полярные эластомеры к неполярным субстратам почти не прилипают. В случае неполярных полимеров локальная диффузия может обусловливаться наличием в одном или обоих полимерах надмолекулярных структур, исключающих диффузию в определенных участках межфазной поверхности. Значение рассмотренного процесса локального растворения, или локальной диффузии, для адгезии тем более вероятно, что, по расчетам, достаточно проникновения в субстрат молекул адгезива всего на несколько десятых нм (несколько Å ), чтобы адгезионная прочность возросла во много раз. В последнее время Догадкиным и Кулезневым развивается концепция, согласно которой на межфазной поверхности контакта двух мало- или почти полностью несовместимых полимеров может про исходить диффузия концевых сегментов их молекул (сегментальная диффузия) . Обоснованием этой точки зрения является то, что совместимость полимеров увеличивается с уменьшением их молярной массы. Кроме того, образование прочного адгезионного соединения может определяться не только взаимопереплетением молекулярных цепей в зоне контакта из-за объемной диффузии, но и диффузией молекул одного полимера по поверхности другого. Даже тогда, когда адгезия обусловливается чисто адсорбционными взаимодействиями, адгезионная прочность практически никогда не достигает своего предельного значения, поскольку активные группы молекул адгезива никогда не укладываются точно на активные места субстрата. Однако можно предположить, что с увеличением времени или с повышением температуры контакта укладка молекул будет становиться более совершенной в результате поверхностной диффузии отдельных сегментов макромолекул. Вследствие этого прочность адгезионного соединения будет возрастать. Согласно диффузионной теории прочность адгезионного соединения обусловлена обычными молекулярными силами, которые действуют между взаимопереплетенными макромолекулами.

Иногда адгезия полимеров невозможно объяснить с точки зрения их взаимодиффузии и приходится прибегать к помощи адсорбционных или электрических представлений. Это относится, например, к адгезии совершенно несовместимых полимеров или к адгезии эластомера к полимерному субстрату, представляющему собой сшитый полимер с весьма густой пространственной сеткой. Однако в этих случаях адгезия обычно невелика. Так как диффузионная теория предусматривает возникновение прочного переходного слоя между полимерами, образующими адгезионный шов, она легко объясняет несоответствие работы расслаивания работе, требующейся для преодоления сил, действующих между адгезивом и субстратом. Кроме того, диффузионная теория позволяет объяснить зависимость работы адгезии от скорости расслаивания исходя из тех же положений, на которых основано объяснение изменения прочности образца полимера при изменении скорости его растяжения.

Помимо общих соображений, указывающих на правильность диффузионной теории адгезии, имеются экспериментальные данные, говорящие в ее пользу. К ним относятся:

  1. положительное влияние на адгезию и аутогезию полимеров увеличения длительности и температуры контакта адгезива и субстрата;
  2. возрастание адгезии с уменьшением , полярности и полимеров;
  3. резкое увеличение адгезии при уменьшении содержания в молекуле адгезива коротких боковых ответвлений и др.

Влияние факторов, обусловливающих повышение адгезии или аутогезии полимеров, полностью коррелирует с их влиянием на диффузионную способность макромолекул.

Результаты количественной проверки диффузионной теории адгезии полимеров путем сопоставления экспериментально найденных и теоретически рассчитанных зависимостей работы расслаивания аутогезионного соединения от времени контакта и мол. массы полимеров оказались в хорошем согласии с представлением о диффузионном механизме образования аутогезионной связи. Диффузия макромолекул при контакте двух полимеров была доказана также экспериментально прямыми методами, в частности с помощью электронной микроскопии. Наблюдение за границей контакта между двумя совместимыми полимерами, находящимися в вязкотекучем или высокоэластичном состоянии, показало, что она размывается во времени, и тем в большей степени, чем выше температуpa. Значения скорости диффузии полимеров, рассчитанные по ширине размытой зоны, оказались достаточно высокими и позволяющими объяснить образование адгезионной связи между полимерами.

Все приведенное выше относится к простейшему случаю, когда наличие в полимере надмолекулярных структур практически не проявляется в рассматриваемых процессах и свойствах. В случае полимеров, на поведение которых существование надмолекулярных структур оказывает большое влияние, диффузия может осложняться рядом специфических явлений, например, частичным или полным диффузионным переходом молекул из надмолекулярного образования, расположенного в одном слое, в надмолекулярное образование в другом слое.

Адгезия, обусловленная химическим взаимодействием

Во многих случаях адгезия может быть объяснена не физическим, а химическим взаимодействием между полимерами. При этом точной границ между адгезией, обусловленной физическими силами, и адгезией, являющейся результатом химического взаимодействия, установить нельзя. Есть основание полагать, что химические связи могут возникать между молекулами почти всех полимеров, содержащими активные функциональные группы, между такими молекулами и поверхностями металла, стекла и др., в особенности, если последние покрыты оксидной пленкой или слоем продуктов эрозии. Надо также учитывать, что в молекулах каучуков имеются двойные связи, обусловливающие в определенных условиях их химическую активность.

Рассмотренные теории, основанные на преобладающей роли какого-нибудь одного определенного процесса или явления при образовании или разрушении адгезионной связи, приложимы к различным случаям адгезии или даже к различным сторонам этого явления. Так, молекулярная теория адгезии рассматривает лишь конечный результат образования адгезионной связи и природу сил, действующих между адгезивом и субстратом. Диффузионная теория , наоборот, объясняет лишь кинетику образования адгезионного соединения и справедлива только для адгезии более или менее взаиморастваримых полимеров. В электрической теории главное внимание уделяется рассмотрению процессов разрушения адгезионных соединений. Таким образом, единой теории, объясняющей явления адгезии , нет и, вероятно, не может быть. В различных случаях адгезия обусловливается разными механизмами, зависящими как от природы субстрата и адгезива, так и от условий образования адгезионной связи; многие случаи адгезии могут быть объяснены действием двух или нескольких факторов.

Адгезия цемента к различным основам (поверхностям), является важной технической характеристикой определяющей следующие возможности. В частности: способность цемента удерживать элементы наполнителя бетона, способность цементной штукатурки «прилипать» и длительное время удерживаться на поверхностях стен выполненных из разных материалов.

Также это способность клея на основе цемента «приклеивать» отделочные и теплоизоляционные материалы (искусственный камень, керамическую плитку, пенополистирол, базальтовую вату и пр.) к кирпичу, бетону, пеноблоку, древесине и другим основам.

Технический смысл адгезии

Слово «Адгезия» в переводе с латинского означает – «прилипание». Имеется ввиду прилипание разнородных или однородных материалов друг к другу. В нашем случае рассматривается «прилипание» растворов на основе цемента: бетон, штукатурка, кладочный раствор, ремонтные составы, клей, другой строительный материал.

Существует три вида адгезии:

  • Физическая. Прилипание происходит на молекулярном уровне. Пример – прилипание магнита к стальной основе.
  • Химическая. Прилипание происходит на атомном уровне. Пример – сваривание и пайка деталей. Также химический смысл имеет адгезия стоматологической пломбы к пульпе зуба.
  • Механическая. Сцепление материалов происходит за счет проникновения адгезива (штукатурка, бетонный раствор, кладочный раствор, клей и т.п.) в поры и шероховатости основы. Пример: оштукатуривание, укладка плитки, окрашивание.

Степень адгезии измеряется в МПа. Цифровое значение обозначает величину силы, которую необходимо приложить для того чтобы оторвать адгезив от основания. Например, на упаковке сухой штукатурной смеси «ЭКО 44» указывается, что минимальная адгезия данного материала к основе составляет 0,5 МПа. Это значит что для того чтобы оторвать слой адгезива от основы понадобиться приложить усилие 5 кг на 1 см2 площади.

Степень адгезии материала к основе разнится от вида и возраста основы. Например старый бетон имеет степень адгезии к новому бетону от 0,9 до 1,0 МПа, в то время как современные сухие строительные смеси способны обеспечивать степень «прилипания» до 2 МПа и более.

Лабораторное испытание степени адгезии сухих строительных смесей осуществляют на специальных образцах, в соответствии с требованиями ГОСТ 31356-2007.

Способы увеличения адгезии

Степень «прилипания» адгезива к основе есть величина «переменная», зависящая от ряда факторов:

  • Чистоты поверхности от загрязнений: пыли, жирных пятен, аморфных масс и пр.
  • Шероховатости поверхности. Например, в силу практически нулевой шероховатости поверхности, величина адгезия цемента к стеклу значительно ниже, чем адгезия цемента к дереву или адгезия цемента к бетону.
  • Усадочные процессы. При усадке адгезива возникают напряжения вызывающие растрескивания и отслоения от основы.

Чтобы получить величину адгезии соответствующей заданным параметрам, необходимо устранить указанные выше факторы. Применяют следующий комплекс мер:

  • Тщательная очистка основы от загрязнений, краски, старой штукатурки и аморфных масс.
  • Увеличение степени шероховатости методом нанесения насечек или шлифовки абразивами. Хороший результат дает обработка гладкой поверхности составом для увеличения шероховатости поверхности «Бетоноконтакт».
  • Применение химического модифицирования бетона специальными добавками, такими как «МС-АДГЕЗИВ» или «SikaLatex®». «МС-АДГЕЗИВ» значительно увеличивает адгезию цементных растворов, в том числе адгезию цемента к металлу и адгезию цемента к краске. Добавка вводится одновременно с затворителем в соответствии с инструкцией по применению. «SikaLatex®» жидкая добавка в цементные растворы улучшающая прочность сцепления, снижающая усадочные процессы. Вводится в затворитель согласно инструкции. С помощью данных добавок получают цемент с высокой адгезией, даже к старому или «гладкому» основанию.
  • Грунтовка основы. Грунтовки глубоко проникают в толщу основы и значительно увеличивают степень сцепления основы с адгезивом. Распространенные бренды: Люксорит-Грунт, Joint Primer, Максбонд Латекс.

Как показывает практика, в частном строительстве применяют не весь комплекс мероприятий, а только некоторые пункты – очистку поверхности и увеличение степени шероховатости. Выполнение этих операций не требуют дополнительных затрат и обеспечивают достаточную степень сцепления при всех видах работ: штукатурке, укладке плитки, отделке пола и т.п.

Методы измерения величины адгезии

Числовое значение степени сцепления основы с адгезивом определяется специальным прибором «ОНИКС-АП» или его аналогами. Техническая суть технологии заключается в приклеивании рабочей пластины прибора на участок штукатурки, плитки, керамогранита и пр. При этом проверяемый участок должен соответствовать габаритам пластины. Соответствие габаритам пластины обеспечивается пропилами адгезива до основания.

Далее прибор начинает нагружать (отрывать) пластину, пока полностью не оторвет ее от основания вместе с испытуемым участком адгезива. По ходу процесса происходит индикация нарастания величины нагрузки. С помощью данного прибора можно измерять степень адгезии от 0 до 10 МПа. Учитывая высокую стоимость данного прибора, около 70 000 рублей, приобретать его для разового использования в частном строительстве экономически нецелесообразно.

Заключение

Производители строительных материалов и торговые сети предлагают потребителям широкий выбор сухих строительных смесей «на все варианты»: штукатурки для наружных и внутренних работ, клеи на основе цемента для плитки, керамогранита, искусственного камня, пенополистирола и других теплоизоляционных и отделочных материалов.

При этом адгезия той или иной смеси соответствует своему назначению при соблюдении инструкции по использованию. Поэтому, если застройщики, используя данные составы, четко придерживаются требований производителя, им не стоит беспокоиться и адгезии – величина адгезии обеспечивается автоматически.

При таком процессе адгезии осуществляется притяжение разных видов веществ на молекулярном уровне. Ей могут быть подвержены и твердые тела и жидкие.

Определение адгезии


Слово адгезия в переводе с латинского обозначает сцепление. Это процесс, при котором на два вещества притягиваются друг к другу. Их молекулы сцепляются между собой. В результате для того чтобы разъединить два вещества необходимо произвести внешнее воздействие.

Данное является представляет собой поверхностный процесс, который является типичным почти для всех систем дисперсного типа. Данное явление возможно между таким, комбинациями веществ:

  • жидкость +жидкость,
  • твердое тело+твердое тело,
  • жидкое тело + твердое тело.

Все материалы, которые начинают взаимодействовать друг с другом при адгезии, называются субстратами. Вещества, которые обеспечивают субстратам плотное сцепление получили название адгезивов. В большинстве своем все субстраты представлены твердыми материалами, которые могут быть металлами, полимерными материалами, пластмассой, керамическим материалом. Адгезивы представлены преимущественно жидкими веществами. Хорошим примером адгезива является такая жидкость, как клей.

Данный процесс может быть результатом:

  • механического воздействия на материалы для сцепления. В этом случае для того, чтобы вещества скрепились необходимо добавление определенных дополнительных веществ и использование механических методов сцепления.
  • появления взаимосвязи между молекулами веществ.
  • Образования двойного электрического слоя. Такое явление происходит, когда электрический заряд переносится с одного вещества на другое.

В настоящее время не редко встречаются случаи, когда процесс адгезии между веществами появляется в результате влияния смешанных факторов.

Прочность адгезии

Прочность адгезии представляет собой показатель того, как плотно сцепляются между собой те или иные вещества. На сегодняшний день прочность адгезионного взаимодействия двух веществ можно определить, используя три группы специально-выработанных методов:

  1. Методы отрыва. Они подразделяются еще на множество способов определения адгезионной прочности. Для определении степени сцепления двух материалов необходимо постараться, используя внешнюю силу разорвать связь между вещества. В зависимости от скрепленных материалов здесь можно применять метод одновременного отрыва, или метод последовательного отрыва.
  2. Метод фактической адгезии без вмешательства в конструкцию, созданную путем сцепления двух материалов.

При использовании разных методов могут получиться различные показатели, которые зависят во многом от толщины двух материалов. Берется во внимание скорость отслаивания и угол, под которым необходимо осуществлять разъединение.

В современном мире встречаются различные виды адгезии материалов. Сегодня адгезия полимеров является не редким явлением. При смешивании разных веществ очень важно, чтобы их активные центры взаимодействовали друг с другом. На границе взаимодействия двух веществ образуются электрически заряженные частицы, которые обеспечивают прочное соединение материалов.

Адгезия клея представляет собой процесс притяжения двух веществ путем механического взаимодействия из вне. Клей применяется для склеивания двух материалов в целях создания одного предмета. Прочность скрепления материалов зависит от того, какой прочностью обладает клей при соприкосновении с отдельными видами материалов. Для склеивания материалов, которые плохо взаимодействуют друг с другом, необходимо усилить действие клея. Для этого можно просто использовать специальный активатор. Благодаря нему образуется прочная адгезия.

Очень часто в современном мире приходится иметь дело со скреплением таких материалов, как бетон и металлы. Адгезия бетона к металлу является достаточно не прочной. Чаще в строительстве применяются специальные смеси, которые обеспечивают надежное скрепление данных материалов. Также не редко применяется строительная пена, которая заставляет металлы и бетон образовывать устойчивую систему.

Метод адгезии

Методы определения адгезии представляют собой способы, при помощи которых устанавливается то, как различные материалы могут взаимодействовать между собой в пределах определенной специфики. Разные строительные объекты и бытовые приспособления созданы из материалов, которые скреплены между собой. Для того чтобы они функционировали в нормальном режиме и не нанесли вреда необходимо тщательно контролировать уровень адгезии между веществами.

Измерение адгезии осуществляется при помощи специализированных приборов, которые позволяют на производственном этапе определить, как прочно изделия прикрепляются друг к другу после использования тех или иных методов скрепления.

Адгезия лакокрасочных материалов

Адгезия лакокрасочных покрытий представляет собой сцепление краски с различными материалами. Чаще всего встречается адгезии лакокрасочного вещества и металла. Для того чтобы покрыть металлические изделия слоем краски изначально проводятся тесты взаимодействия двух материалов. Учитывается то, каким слоем необходимо нанести лакокрасочное вещество для того, чтобы определить его степень адсорбции. В последующем определяется уровень взаимодействия красящей пленки и материала, которым она покрывается.

С. А. Ненахов (НПО НЕОХИМ, г. Москва)


Термины адгезионно-клеевой тематики не отнесешь к неологизмам. Так, термин адгезия ввели в 1924 г. Бехольд и Нейман для обозначения специфического молекулярного сцепления в дополнение к господствовавшим тогда представлениям о механическом характере природы склеивания. Появление термина клей в русской лексике относят к XII веку. Тем не менее и сегодня нельзя сказать, что этим терминам присуща специализация значения и семантическая точность даже при использовании их в научной литературе.

Встречающаяся в публикациях и нормативно-технических документах многозначность и неопределенность термина клей и производных от этого термина слов и словосочетаний в основном обусловлена известной терминологической неряшливостью авторов, т. е. это вопрос культуры языка и, может быть, лексикографии. Общепринятые термины клеевой тематики представлены ниже.

Что касается термина адгезия, то многозначность и неопределенность этого термина напоминает путаницу и неразбериху, которая царила в XVII-XVIII веках в фундаментальных понятиях теории теплоты вплоть до тех пор, пока изобретение и применение термометра не сделали возможным четкое разграничение понятий температуры и количества теплоты. Исходя из допустимой аналогии с прошлыми трудностями в формировании понятийного аппарата термодинамики, можно полагать, что и в вопросе адгезии мы имеем дело не столько с проблемой лексической договоренности (конвенционализации) в научном сообществе, сколько с проблемой методологической, а точнее, с аксиоматической проблемой.

Достаточно драматично для своего времени методологическую проблему выразил С.С. Воюцкий, писавший, что существующие теории адгезии рассматривают разные случаи и разные стороны этого явления, и "...единой теории, объясняющей явления адгезии, нет и, вероятно, не может быть. В различных случаях адгезия обусловливается разными механизмами..." . Действительно, по меньшей мере, пять теоретических подходов к механизму адгезии имелись к концу 70-х годов прошлого века: электрическая теория, адсорбционная теория, диффузионная теория, механическая теория и теория слабого граничного слоя. Попытку формального объединения этих теорий предпринял К.В. Ален .

Существующие в литературе многочисленные определения адгезии по семантическим признакам могут быть разделены на три группы. К первой группе отнесем формулировки, определяющие адгезию как процесс (последовательную смену состояний). Ко второй - определяющие как свойство (качество, признак), составляющее отличительную особенность системы. К третьей - определяющие как состояние (внешние или внутренние обстоятельства, в которых находится что-нибудь) системы. Ниже приведены типичные примеры определений.

Адгезия как процесс

"Адгезия (прилипание) - возникновение связи между поверхностными слоями двух разнородных (твердых или жидких) тел (фаз), приведенных в соприкосновение" (П. А. Ребиндер) .

"Адгезия - явление, заключающееся в возникновении физического и/или химического взаимодействия между конденсированными фазами при их молекулярном контакте, приводящее к образованию новой гетерогенной системы" (В. Л. Вакула, Л. М. Притыкин) .

"Адгезия - явление соединения приведенных в контакт поверхностей конденсированных фаз" (Л. М. Притыкин, В. Л. Вакула) .

Примеры такого подхода можно множить. Видно, что здесь адгезия трактуется как процесс в системе из двух конденсированных фаз при их сближении (из бесконечного удаления) до расстояния действия межмолекулярных сил, в результате которого возникает связь между разнородными конденсированными фазами. Надо сказать, что терминами с аналогичной грамматической структурой, этимологически восходящими к латинским корням, действительно, обозначают преимущественно некие процессы, например, адсорбцию, диффузию, сорбцию и т.д. Чтобы не быть голословными, приведем пример из "Физического энциклопедического словаря": "Диффузия - процесс установления внутри фаз равновесного распределения концентраций..." . В отличие от них фонетически близкие грекоязычные по происхождению термины, например, "энергия" и "энтропия" обозначают некую меру. Таким образом, про данный "процессный подход" можно сказать, что здесь семантическое значение термина и его грамматическая форма соответствуют друг другу. Но, с другой стороны, фразы, подобные выражению "кинетика формирования адгезии", тоже нам понятны и не вызывают раздражения.

Адгезия как свойство

"Под адгезией понимают молекулярную связь между поверхностями приведенных в контакт разнородных тел" (А.А. Берлин, В.Е. Басин) [Ю, 11].

"Под адгезией жидкостиподразумевают взаимодействие жидкой и твердой фаз на границе раздела этих фаз" (А.Д. Зимон) .

"Адгезия, прилипание... - связь между приведенными в контакт разнородными поверхностями" (С.С. Воюцкий) .

Б.В. Дерягин с сотрудниками предпринял попытку устранить проблему, разделив процесс и свойство: "Общепринято под адгезией, в отличие от когезии, подразумевать сопротивление нарушению контакта двух разнородных тел. Поэтому явления адгезии естественно относить к поверхностным явлениям, контролируемым поверхностными силами. Для устранения двусмысленности было бы целесообразно термин "прилипание" относить к процессам установления и прогрессивного роста со временем молекулярной связи между двумя телами, термин же "адгезия" применять для обозначения достигнутой прочности этой связи. Таким образом, прилипание в согласии с этимологической основой слова должно обозначать процесс, а адгезия - количественную меру его результата" . Заметим, что с этимологической точки зрения справедлива только первая часть последнего в цитате предложения.

Аналогичные определения в те же годы появляются, например, в англоязычной литературе: С.Wake , Л.-Х.Ли . А. Адамсон, стремясь ограничить многозначность термина, предлагал в узком смысле "под адгезией понимать прочность связи двух соприкасающихся фаз" .

Адгезия как состояние

"Адгезия - такое состояние двух разнородных тел, при котором они удерживаются вместе в тесном межфазном контакте таким образом, что механическая сила или работа могут быть переданы через границу раздела" By Шоухенг) . Отметим, что рамки грамматической структуры термина в этом направлении первыми преодолели англоязычные авторы. Приведенное определение расширяет толкование термина до нового семантического значения - состояния двух разнородных тел. В чем особенность этого состояния? Согласно предложению автора - в наличии межфазного контакта между этими разнородными телами. Такого контакта, что механическая работа может быть передана через границу раздела фаз. Возможность же передачи механической работы через границу раздела означает наличие взаимодействия (силы притяжения, аттракции) между фазами, т.е. данное определение, акцентирующее состояние, по сути, возвращает нас к тому же объекту - межфазной границе и к тому же межфазному взаимодействию.

Подытожим. Во всех трех группах определений речь идет об одном и том же объекте - гетерогенном теле, состоящем из двух разнородных конденсированных контактирующих фаз, при этом тела через границу раздела связаны межмолекулярными силами. Разница между этими группами определений состоит в том, что в первой группе терминов упор делается на процессе возникновения связи или переходе системы в новое состояние - связанное, во второй группе - собственно на наличии связи, мере результата. Наконец, в третьей группе упор делается на состоянии (есть связь, нет связи) и игнорируется процесс.

В современной терминографии, к сожалению, нет единой точки зрения относительно допустимости такой неоднозначности. Специалисты одной школы считают, что однозначность - непременная черта термина . Другие - что многозначность термина не есть доказательство нечеткости языковых понятий , т.е. опереться на терминографию мы не можем. В такой ситуации проще всего - оставить все как есть, поскольку из контекста обычно ясно, о чем идет речь. Педанты предпочтут процессный подход, но время все расставит по местам, а терминология найдет этому объяснение.

Нам представляется, что главная трудность заключается не столько в многозначности приведенных определений - они все о разных сторонах одного и того же явления, сколько в многообразии объектов и явлений, которые пытаются подвести под это определение и рассматривать как явления адгезионные, что и приводит к двусмысленности.

Например, как быть с множеством теорий, объясняющих механизм адгезии? Действительно ли участь адгезии столь печальна, что это явление не может быть описано единой теорией? Не претендуя на детальное рассмотрение всего вопроса, и даже на детальное рассмотрение аксиоматики адгезии, мы здесь лишь выскажем предположение, что число адгезионных теорий может значительно сократиться, если ограничить обычно рассматриваемый круг объектов только теми, о которых действительно идет речь в рассмотренных определениях. Так, если в определении адгезии уточнить, ограничить понятие объекта, а именно отказаться от аморфного словосочетания "разнородные тела (фазы)" в пользу конкретного "несовместимые в термодинамическом смысле фазы", то некоторые теории, числящиеся по классу адгезионных, вьпадут из круга адгезионных проблем.

Например, диффузионная теория. Объекты и явления, описываемые в диффузионной теории, действительно существуют, но это совместимые системы без равновесных межфазных границ, это системы, для которых характерно (в пределе) исчезновение границы раздела, поэтому, строго говоря, их нельзя относить к объектам, рассматриваемым во всех трех приведенных выше группах определений. Конечно, диффузионные процессы многое определяют в поведении (кинетике, равновесных свойствах) совместимых систем. Но эти явления не имеют отношения к адгезии, а скорее, к теории аутогезии или когезии.

Механическая теория адгезии фактически рассматривает системы с разного рода механическими зацеплениями, описание поведения которых при механическом нагружении имеет теоретический и практический смысл, но собственно механические зацепления не имеют отношения к межмолекулярным силам. Конечно, механические зацепления возможны и в реальных адгезионных соединениях. Их вклад в механическую прочность может даже превышать собственно адгезионный вклад, но эта задача относится скорее к учету свойств деформируемых макротел, т. е. к теоретической механике. В соответствии с механической теорией адгезии пазлы также следовало бы отнести к адгезионным объектам.

Теория слабого граничного слоя. В наше время ясно осознано, что вблизи границы раздела фаз происходит перестройка структуры тела. Протяженность этих областей может достигать нескольких десятков микрометров, а сами области характеризоваться другой степенью упаковки молекул, нежели тело в объеме. Согласно этой теории разрушение тела происходит по так называемому слабому слою, который, как правило, локализуется вне собственно границы раздела фаз. Образование этого слоя является следствием действия сил межмолекулярного взаимодействия между фазами, т.е. вторично по отношению к формированию связей на границе раздела несовместимых фаз. В реальных системах разная степень дефектности межфазных слоев способна существенно повлиять на результаты, например, механических испытаний, но это обстоятельство не является ни необходимым, ни достаточным для отнесения теории слабого граничного слоя к теориям адгезии. Скорее, эта теория должна быть отнесена к теориям, объясняющим отклонение от "идеальной" адгезии.

Таким образом, если исходить строго из рассмотренных определений адгезии, то можно констатировать, что единый предмет в определениях адгезии существует - это межфазная граница контактирующих несовместимых фаз. Другое дело, что для описания этого предмета (явления) существуют разные подходы, например, термодинамический. Или в виде молекулярных теорий взаимодействия между макроскопическими телами, например, теория на основе сил Ван-дер-Ваальса, теория на основе потенциала Ленарда-Джонса или теория Лившица, рассматривающая излучаемые телами электромагнитные волны. Эти теории достаточно подробно изложены в ряде монографий, например, в . Другие же теории (механическую и теорию слабого граничного слоя) уместно рассматривать в качестве поправок, учитывающих отклонения (иногда существенные) от идеальной адгезии.

Полемичность изложенного здесь подхода на фоне исторически сложившихся представлений очевидна. Но нам представляется, что система изложенных ограничений (одно из требований аксиоматики) вытекает из всех рассмотренных определений адгезии. Ограничение по объектам и явлениям может помочь отделению вторичных явлений от первичных, помочь отнесению явлений другой, не адгезионной природы к "своей нише". Это и будет означать построение единой и непротиворечивой аксиоматики адгезии и устранение существующей сегодня терминологической двусмысленности.

Словарь

Адгезия (от лат. adhaesio - прилипание, англ. adhesion) - 1) возникновение межмолекулярного взаимодействия между приведенными в контакт разнородными конденсированными фазами; 2) установившееся взаимодействие между фазами на границе раздела и величина, его характеризующая; 3) связанное состояние разнородных фаз (тел), при котором они удерживаются в межфазном контакте.

Абгезив (англ. abhesive) - разделительный материал, предотвращающий адгезию.

Адгезив (англ. adhesive) - 1) клеящее вещество; 2) связующее вещество; 3) клей; 4) липкий; 5) клейкий; 6) материал, соединяющий между собой другие материалы путем сцепления с их поверхностями.

Адгезионный (-ое, -ая) - прилагательное, обозначающее принадлежность некоторого предмета к адгезии, например, адгезионная прочность - прочность адгезионного соединения.

Адгеренд (англ. adherend) - склеиваемый материал, субстрат.

Аутогезия - связь одноименных (совместимых) материалов от момента приведения их в контакт до момента диффузионного исчезновения геометрической границы раздела.

Клей - материал, соединяющий между собой другие материалы путем сцепления с их поверхностями.

Когезия (англ. cohesion) - 1) сцепление между находящимися в контакте поверхностями двух однородных по составу тел; 2) связность; 3) свойство тела, обеспечивающее связывание его частей.

Липкость - сопротивление, оказываемое клеем при отделении его от субстрата.

Промотор - добавка к адгезиву (клею), увеличивающая механическую прочность адгезионных соединений.

Соединение клеевое - соединение двух субстратов (тел) между собой слоем клея.

Субстрат (англ. substrate) - материал, на поверхность которого наносят клей.

Фаза (англ. phase) - однородная обособленная часть системы, отделенная от других частей разграничивающими поверхностями.

"Клеи. Герметики. Технологии" №4, 2007

Loading...Loading...