Для чего нужны устьица на листьях. Строение устьиц растений. Механизм работы устьиц растений. Влияние факторов среды на внешнее строение листа

Хотя учёные давно знали об испарении воды поверхностью листа, первым, кто наблюдал устьица, был итальянский натуралист Марчелло Мальпиги , который это открытие опубликовал в 1675 году в своей работе Anatome plantarum . Однако он не понял их настоящую функцию. В то же время его современник Неемия Грю развил гипотезу об участии устьиц в вентиляции внутренней среды растения и сравнил их с трахеями насекомых . Прогресс в изучении наступил в XIX веке , и тогда же, в 1827 году , швейцарским ботаником Декандолем было впервые использовано слово „stoma“. Изучением устьиц в то время занимались Гуго фон Моль , который открыл основной принцип открывания устьиц и Симон Швенденер , классифицировавший устьица по типу их конструкции.

Некоторые аспекты функционирования устьиц продолжают интенсивно изучаться и в настоящее время; материалом в основном служат Коммелина обыкновенная (Commelina communis ), Боб садовый (Vicia faba ), Кукуруза сахарная (Zea mays ) .

Строение

Размеры устьица (длина) колеблются в пределах 0,01-0,06 мм (крупнее бывают устьица полиплоидных растений и у листьев, растущих в тени. Самые крупные устьица были обнаружены у вымершего растения Zosterophyllum , 0,12 мм (120 мкм) . Пора состоит из пары специализированных клеток, называемых замыкающими (cellulae claudentes ), которые регулируют степень открытости поры, между ними располагается устьичная щель (porus stomatalis ). Стенки замыкающих клеток утолщены неравномерно: направленные к щели (брюшные) толще стенок, направленных от щели (спинных). Щель может расширяться и сужаться, регулируя транспирацию и газообмен. Когда воды мало, замыкающие клетки плотно прилегают друг к другу и устьичная щель закрыта. Когда воды в замыкающих клетках много, то она давит на стенки и более тонкие стенки растягиваются сильнее, а более толстые втягиваются внутрь, между замыкающими клетками появляется щель . Под щелью расположена подустьичная (воздушная) полость, окружённая клетками мякоти листа, через которую непосредственно и происходит газообмен . Воздух, содержащий диоксид углерода (углекислый газ) и кислород , проникает внутрь ткани листа через эти поры, и далее используется в процессе фотосинтеза и дыхании. Избыточный кислород, произведённый в процессе фотосинтеза внутренними клетками листа, выходит обратно в окружающую среду через эти же поры. Также, в процессе испарения через поры выделяются пары воды. Клетки эпидермиса , примыкающие к замыкающим, получили название сопровождающих (побочных, соседних, околоустьичных). Они участвуют в движении замыкающих клеток. Замыкающие и сопровождающие клетки образуют устьичный комплекс (устьичный аппарат). Наличие или отсутствие устьиц (видимые части устьиц называют устьичными линиями ) часто используют при классификации растений.

Типы устьиц

Число сопровождающих клеток и их расположение относительно устьичной щели позволяют выделить ряд типов устьиц:

  • аномоцитный - сопровождающие клетки не отличаются от остальных клеток эпидермиса , тип весьма обычен для всех групп высших растений , за исключением хвойных ;
  • диацитный - характеризуется только двумя сопровождающими клетками, общая стенка которых находится под прямым углом к замыкающим клеткам;
  • парацитный - сопровождающие клетки располагаются параллельно замыкающим и устьичной щели;
  • анизоцитный - замыкающие клетки окружены тремя сопровождающими, одна из которых заметно крупнее или мельче остальных, такой тип обнаружен только у цветковых растений;
  • тетрацитный - четыре сопровождающие клетки, характерен для однодольных ;
  • энциклоцитный - сопровождающие клетки образуют узкое колесо вокруг замыкающих клеток;
  • актиноцитный - несколько сопровождающих клеток, радиально расходящихся от замыкающих клеток;
  • перицитный - замыкающие клетки окружены одной побочной сопровождающей клеткой, устьице не соединено с сопровождающей клеткой антиклинальной клеточной стенкой;
  • десмоцитный - замыкающие клетки окружены одной сопровождающей клеткой, устьице соединено с ней антиклинальной клеточной стенкой;
  • полоцитный - замыкающие клетки окружены одной сопровождающей не полностью: к одному из устьичных полюсов примыкает одна или две эпидермальные клетки; устьице прикреплено к дистальной стороне единственной сопровождающей клетки, имеющей U-образную или подковообразную форму;
  • стефаноцитный - устьице, окружённое четырьмя или более (обычно пять-семь) слабодифференцированными сопровождающими клетками, образующими более или менее отчётливую розетку;
  • латероцитный - такой тип устьичного аппарата рассматривается большинством ботаников как простая модификация аномоцитного типа.

Расположение устьиц

Двудольные растения, как правило, в нижней части листа имеют больше устьиц, чем в верхней. Это объясняется тем, что верхняя часть горизонтально-расположенного листа, как правило, лучше освещена, и меньшее количество устьиц в ней препятствует избыточному испарению воды. Листья с устьицами, расположенными на нижней стороне, называются гипостоматическими.

У однодольных растений наличие устьиц в верхней и нижней части листа различно. Очень часто листья однодольных растений расположены вертикально, и в этом случае количество устьиц на обоих частях листа может быть одинаково. Такие листья называются амфистоматическими.

У плавающих листьев на нижней части листа устьица отсутствуют, так как они могут впитывать воду через кутикулу . Листья с устьицами, расположенными на верхней стороне, называются эпистоматическими. У подводных листьев устьица отсутствуют совсем.

Устьица хвойных растений обычно спрятаны глубоко под эндодермой, что позволяет сильно снизить расход воды зимой на испарение, а летом - во время засухи.

У мхов (исключение антоцеротовые) настоящие устьица отсутствуют.

Устьица также различаются по уровню расположения относительно поверхности эпидермиса. Некоторые из них расположены вровень с другими эпидермальными клетками, другие подняты выше или погружены ниже поверхности. У однодольных, листья которых растут преимущественно в длину, устьица образуют правильные параллельные ряды, тогда как у двудольных они располагаются беспорядочно.

Углекислый газ

Так как углекислый газ является одним из ключевых реагентов в процессе фотосинтеза, у большинства растений устьица в дневное время открыты. Проблема состоит в том, что при входе воздух смешивается с парами воды, испаряющимися из листа, и поэтому растение не может получить углекислый газ, одновременно не потеряв некоторое количество воды. У многих растений существует защита от испарения воды в виде закупоривающих устьица восковых отложений.

Вопрос 1. О каком органе пойдёт речь? Речь пойдет о листьях.

Предложи основной вопрос урока. Cравни свой вариант с авторским (с. 141). Какой орган растения может испаряет воду и усваивать свет?

Вопрос 2. Как водоросли впитывают кислород, воду и минеральные вещества? (5-й класс)

Водоросли впитывают кислород, воду и минеральные вещества всей поверхностью таллома.

Как растения используют свет? (5-й класс)

Обычно растение использует солнечный свет для переработки необходимого для его жизни углекислого газа. Благодаря хлорофиллу, веществу, которое окрашивает листья в зеленый цвет, они способны преобразовывать энергию света в химическую энергию. Химическая энергия позволяет получать из воздуха углекислый газ и воду, из которых синтезируются углеводы. Такой процесс называется фотосинтезом. Одновременно растения выделяют кислород. Углеводы соединяются между собой, образуя другое вещество, которое накапливается в корнях, и таким образом образуются вещества, необходимые для жизни и развития растения.

Что такое устьица? (5-й класс)

Устьица – щелевидные отверстия в кожице листа, окруженное двумя замыкающими клетками. Служат для газообмена и транспирации.

Листья каких растений люди заготавливают впрок и зачем?

Заготавливают листья лекарственных растений (например, подорожник, кипрей, мать-и-мачеха и др.) для приготовления в последующем чая, отваров. Также заготавливают листья смородины для чая, мяты для чая и приготовления блюд. Многие сушеные приправы также сделаны из листьев.

Какой газ выделяют клетки в процессе дыхания? (5-й класс)

При дыхании поглощается кислород, а выделяется углекислый газ.

Вопрос 3. Объясни с помощью текста и рисунков, как строение листа связано с выполняемыми им функциями.

Богатые хлоропластами клетки листа называют основной тканью листа, она и выполняет главную функцию листьев – фотосинтез. Верхний слой основной ткани состоит из плотно прижатых друг к другу клеток в виде столбиков – этот слой называют столбчатой паренхимой.

Нижний слой состоит из рыхло расположенных клеток с обширными просветами между ними – его называют губчатой паренхимой.

Газы свободно проходят между клетками основной ткани. Запас углекислого газа пополняется поступлением как из атмосферы, так и из клеток.

Для газообмена и транспирации у листа есть устьица.

Вопрос 4. Рассмотри строение листа на рисунке 11.1.

Лист состоит из листовой пластинки, черешка (может быть не у всех листьев, тогда такой лист называют сидячим), прилистников и основания листовой пластинки.

Вопрос 5. Существует противоречие: фотосинтезирующие клетки листа нужно упаковать плотнее, но движению газов препятствовать нельзя. Рассмотри рисунок 11.2 и объясни, как строение листа позволяет устранить это противоречие.

В паренхиме листа есть воздухоносные полости, которые и решают эту проблему. Эти полости связаны с внешней средой через устьица и чечевички. Воздухоносными полостями богаты стебли и корни водных, болотных и других растений, обитающих в условиях недостатка воздуха и, как следствие, затрудненного газообмена.

Вывод: листья осуществляют фотосинтез, испаряют воду, поглощают углекислый газ и выделяют кислород, защищают почки и запасают питательные вещества.

Вопрос 6. Каковы функции листа?

Листья испаряют воду, поглощают углекислый газ и выделяют кислород в процессе фотосинтеза, защищают почки и запасают питательные вещества.

Вопрос 7. Что происходит в листе с кислородом и углекислым газом?

Поглощенный из атмосферы углекислый газ + вода (уже в листьях) в листьях под действием солнечного света преобразуются в органические вещества и кислород. Последний выделяется растением в атмосферу.

Вопрос 8. Что происходит в листе с водой?

Часть воды, поступающей в листья, испаряется, а часть используется в процессе фотосинтеза.

Вопрос 9. Из каких тканей состоит лист?

Лист покрывает покровная ткань – эпидерма. Богатые хлоропластами клетки листа называют основной тканью листа. Верхний слой основной ткани состоит из плотно прижатых друг к другу клеток в виде столбиков – этот слой называют столбчатой паренхимой. Нижний слой состоит из рыхло расположенных клеток с обширными просветами между ними – его называют губчатой паренхимой.

Газы свободно проходят между клетками основной ткани за счет воздухоносной паренхимы. Для газообмена и транспирации у листа есть устьица.

Толщу основной ткани листа пронизывают проводящие ткани – пучки сосудов, состоящих из ксилемы и флоэмы. Пучки сосудов укреплены длинными и толстостенными клетками опорной ткани – они придают листу дополнительную жёсткость.

Вопрос 10. Каковы функции жилок листа?

Жилки - это транспортные магистрали двух направлений. Вместе с механическими волокнами жилки – жёсткий каркас листа.

Вопрос 11. Чем опасно перегревание и переохлаждение листа?

При слишком высокой температуре, как и при слишком низкой, фотосинтез останавливается. Не производятся ни органические вещества, ни кислород.

Вопрос 12. Как происходит отделение листа от ветки?

Питательные вещества уходят из листьев и откладываются в корнях или побегах про запас. В месте прикрепления листа к стеблю клетки отмирают (образуется рубец), и перемычка между листом и стеблем становится ломкой, её разрушает и слабый ветерок.

Вопрос 13. Чем вызвано многообразие форм листьев у растений разных видов?

От формы листа зависит испарение с него. У растений жаркого и сухого климата листья мельче, иногда в форме иголок и усиков. Благодаря этому уменьшается поверхность, с которой испаряется вода. Способ уменьшить испарение с больших листьев – обрасти пушком или покрыться толстой кутикулой либо восковым налётом.

Вопрос 14. Почему форма и размеры листьев на одном растении могут различаться?

В зависимости от среды, где эти листья находятся. Например, у стрелолиста, листья, находящиеся в воде, отличаются от листьев, выходящих на поверхность воды. Если это наземное растение, то зависит от освещенности растения солнцем, степени близости листа к корню, времени распускания листьев.

Вопрос 15. Мои биологические исследования

Словесный портрет листа может заменить его изображение.

Ботаники договорились, какими словами называть листья той или иной формы. Поэтому они могут узнать лист по словесному портрету, не заглядывая в ботанический атлас. Однако новичкам полезно пользоваться их изображениями. На с. 56 приведены схемы, где представлены разные формы листовых пластинок, вершин и оснований листовых пластинок, сложных листьев (рис. 11.7–11.11). C помощью этих схем создай словесные портреты листьев растений из гербария, ботанического атласа или учебника.

Например, у герани зональной листья длинночерешковые, слаболопастные, округлопочковидной формы, светло-зеленые, опушенные. Край листовой пластинки цельный. Вершины листовой пластинки округлые, основание листа сердцевидное.

Лавр благородный. В простонародии лист называют лавровый лист. Листья очередные, короткочерешковые, цельнокрайные, голые, простые, длиной 6-20 см и шириной 2-4 см, со своеобразным пряным запахом; пластинка листа продолговатая, ланцетная или эллиптическая, к основанию суженная, сверху тёмно-зелёная, с нижней стороны более светлая.

Клен остролистный. Форма листа простая, цельноразделенная. Листья обладают четкими, ярко выраженными жилами, имеют 5 лопастей, заканчиваются остроконечными долями, 3 передние лопасти одинаковы, 2 нижние чуть меньше. Между лопастями имеются закругленные выемки. Вершины листовой пластинки оттянутые, основание листа сердцевидное. Край листовой пластинки цельный. Сверху листья темно – зеленые, снизу – светло-зеленые, держатся на длинных черешках.

Акация белая. Лист имеет непарноперистый, сложный, состоящий из цельных, формой похожих на овал или эллипс, листочков, у основания каждого листа расположены видоизмененные в колючки прилистники.

Береза. Листья берёзы очерёдные, цельные, по краю зубчатые, яйцевидно-ромбические или треугольно-яйцевидные, с широким клиновидным основанием или почти усечённые, гладкие. Жилкование листовой пластинки совершенное перисто-нервное (перисто-краебежное): боковые жилки оканчиваются в зубцах.

Шиповник. Листорасположение очерёдное (спиральное); жилкование – перистое. Листья у него сложные, непарноперистые (верхушка листа заканчивается одним листочком), с парой прилистников. Листочков пять-семь, они эллиптические, края пильчатые, верхушка клиновидная, снизу сероватые.

Урок «Клеточное строение листа»

Цель: показать взаимосвязь строения листа с его функциями; развить понятие о клеточном строении растений; продолжить формирование навыков самостоятельной работы с приборами, умений наблюдать, сравнивать, сопоставлять, делать самостоятельно выводы; развивать любовь и уважение к природе.

Оборудование : таблицы «Разнообразие листьев», «Клеточное строение листа»; гербарий – жилкование листьев, листья простые и сложные; комнатные растения; препараты кожицы листьев традесканции, герани.

ХОД УРОКА

Каждую весну, лето на улицах, скверах, в школьном дворе, а дома – круглый год на подоконниках нас окружают нарядные зеленые растения. Мы привыкли к ним. Привыкли настолько, что часто не замечаем разницы между ними.

Раньше многим казалось, что все листья одинаковы, но прошлый урок показал разнообразие их удивительных форм, их красоту. Вспомним пройденный материал.

Растения в зависимости от количества семядолей делятся на две группы. Какие? Верно, однодольные и двудольные! А теперь посмотрите: оказывается, каждый листик знает, к какому классу относится его растение, а кружево листорасположения помогает листьям лучше использовать свет.

Итак, возьмите первый конверт. В нем лежат листья разных растений. Разделите их на две группы по типу жилкования. Молодцы! А теперь листья из второго конверта тоже разложите на две группы, но уже по вашему усмотрения. Кто сможет сказать, каким принципом вы руководствовались при наведении порядка? Правильно, вы разделили листья сложные и простые.

А теперь посмотрите – на столах задания. Пожалуйста, выполните их.

1. Лист – это часть... . Листья состоят из... и... .

2. На рисунке изображены листья с разными типами жилкования. Подпишите, у какого листочка какое жилкование.

От внешнего описания перейдем к изучению внутреннего строения листа. На одном из уроков мы узнали, что лист необходим растению для воздушного питания, а как он устроен? Лист состоит из клеток, при этом клеток неодинаковых и выполняющих при этом разные функции. Какая ткань покрывает лист? Покровная или защитная!

В зеленом тереме
Площади не меряны,
Комнаты не считаны,
Стены – как стекло,
Все насквозь видно!
А в стенах – окошки,
Сами открываются
Сами закрываются!

Давайте разберем эту загадку. Зеленый терем – это лист, комнаты – клетки. Прозрачные, как стекло, стены – это покровная ткань. Вот ее мы сегодня и рассмотрим. Для этого вам нужно приготовить препарат. Как правильно это делать, мы научились, когда изучали кожицу листа.

Один ученик делает препарат кожицы верхней стороны листа, второй – нижней. Приготовили, настроили микроскоп. Сначала рассмотрим верхнюю кожицу. Почему она как стекло? Потому что прозрачная и поэтому пропускает лучи света.

А что значит «в стенах окошки»? Попробуйте найти их! Для этого лучше рассмотреть кожицу нижней стороны листа. Чем некоторые клетки отличаются от остальных?

Устьичные клетки образуют «окошко»: они замыкающие и, в отличие от других клеток покровной ткани, имеют зеленый цвет, т.к. содержат хлоропласты. Щель между ними называется устьичной.

Как вы думаете, зачем нужны устьица? Для обеспечения испарения, проникновения в лист воздуха. А открываются и закрываются они для регуляции проникновения воздуха и воды. Рассмотрите различия в строении верхней и нижней кожицы. Устьиц на нижней стороне больше. У разных растений листья имеют разное количество устьиц.

Теперь нам нужно оформить наши наблюдения в виде отчета о лабораторной работе. Для этого выполните следующие задания.

Лабораторная работа «Строение кожицы листа»

1. Найдите на микропрепарате бесцветные клетки покровной ткани, рассмотрите их. Опишите, какую форму они имеют? Каково их строение? Какую роль они играют в жизни листа?

2. Найдите устьица. Зарисуйте форму замыкающих клеток. Отметьте, чем отличаются замыкающие клетки от клеток покровной ткани. Найдите между замыкающими клетками устьичную щель.

3. Зарисуйте кожицу в тетрадь, на рисунке подпишите: основные клетки кожицы, замыкающие клетки, устьица, устьичную щель.

Устьица, их строение и механизм действия

Клетки эпидермиса почти непроницаемы для воды и газов благодаря своеобразному устройству их наружной стенки. Как же осуществляются газообмен между растением и наружной средой и испарение воды -- процессы, необходимые для нормальной жизнедеятельности растения? Среди клеток эпидермиса встречаются характерные образования, называемые устьицами.

Устьице -- щелевидное отверстие, окаймленное с двух сторон двумя замыкающими клетками, имеющими большей частью полулунную форму.

Устьица - это поры в эпидермисе, через которые происходит газообмен. Они имеются главным образом в листьях, но есть и на стебле. Каждое устьице с двух сторон окружено замыкающими клетками, которые в отличие от других эпидермальных клеток содержат хлоропласты. Замыкающие клетки контролируют величину отверстия устьица за счет изменения своей тургесцентности.

Клетки эти живые и содержат хлорофилловые зерна и крупинки крахмала, отсутствующие в других клетках эпидермиса. Особенно много устьиц на листе. На поперечном разрезе видно, что непосредственно под устьицем внутри ткани листа находится полость, называемая дыхательной. В пределах щели замыкающие клетки более сближены в средней части клеток, а выше и ниже они дальше отступают друг от друга, образуя пространства, называемые передним и задним двориком.

Замыкающие клетки способны увеличивать и сокращать свои размеры, благодаря чему устьичная щель то широко раскрывается, то суживается или даже совсем бывает закрыта.

Таким образом, замыкающие клетки являются аппаратом, регулирующим процесс открывания и закрывания устьиц.

Как же осуществляется этот процесс?

Стенки замыкающих клеток, обращенные к щели, утолщены значительно сильнее, чем стенки, обращенные к соседним клеткам эпидермиса. Когда растение освещено и имеет избыток влаги, в хлорофилловых зернах замыкающих клеток происходит накопление крахмала, часть которого превращается в сахар. Сахар, растворенный в клеточном соке, притягивает воду из соседних клеток эпидермиса, вследствие чего в замыкающих клетках повышается тургор. Сильное давление приводит к выпячиванию стенок клеток, примыкающих к эпидермальным, а противоположные, сильно утолщенные стенки выпрямляются. Вследствие этого устьичная щель раскрывается, и газообмен, а также испарение воды увеличиваются. В темноте или при недостатке влаги тургорное давление уменьшается, замыкающие клетки принимают прежнее положение и утолщенные стенки смыкаются. Щель устьица закрывается.

Устьица расположены на всех молодых неодревесневших наземных органах растения. Особенно много их на листьях, причем здесь они расположены, главным образом, на нижней поверхности. Если лист расположен вертикально, то устьица развиваются с обеих его сторон. У плавающих на поверхности воды листьев некоторых водных растений (например, кувшинки, кубышки) устьица расположены только на верхней стороне листа.

Число устьиц на 1 кв. мм листовой поверхности в среднем равно 300, однако иногда достигает 600 и более. У рогоза (Typha) насчитывают свыше 1300 устьиц на 1 кв. мм. Листья, погруженные в воду, устьиц не имеют. Расположены устьица чаще всего равномерно по всей поверхности кожицы, но у некоторых растений собраны группами. У однодольных растений, а также на хвоинках многих хвойных они расположены продольными рядами. У растений засушливых областей нередко устьица бывают погружены в ткань листа. Развитие устьиц обычно происходит следующим образом. В отдельных клетках эпидермиса образуются дугообразные стенки, разделяющие клетку на несколько более мелких так, что центральная из них становится родоначальницей устьиц. Эта клетка разделяется продольной (по оси клетки) перегородкой. Затем эта перегородка расщепляется, и образуется щель. Ограничивающие ее клетки становятся замыкающими клетками устьица. У некоторых печеночных мхов имеются своеобразные устьица, лишенные замыкающих клеток.

На рис. показан вид устьиц и замыкающих клеток на микрофотографии, полученной с помощью сканирующего электронного микроскопа.

Здесь видно, что клеточные стенки замыкающих клеток неоднородны по толщине: та стенка, которая ближе к отверстию устьица, явно толще, чем противоположная стенка. К тому же целлюлозные микрофибриллы, из которых состоит клеточная стенка, расположены таким образом, что стенка, обращенная к отверстию, менее эластична, а некоторые волокна образуют своего рода обручи вокруг замыкающих клеток, похожих на сардельки. По мере того как клетка всасывает воду и становится тургесцентной, эти обручи не дают ей расширяться дальше, позволяя лишь растягиваться в длину. Поскольку замыкающие клетки соединены своими концами, а более тонкие стенки вдали от устьичной щели растягиваются легче, клетки приобретают полукруглую форму. Поэтому между замыкающими клетками появляется отверстие. (Такой же эффект мы получим, если будем надувать колбасовидный воздушный шарик с липкой лентой, приклеенной к нему вдоль одной из его сторон.)

И наоборот, когда вода выходит из замыкающих клеток, пора закрывается. Каким образом происходит изменение тургесцентности клеток, пока не ясно.

В одной из традиционных гипотез - "сахарокрахмальной" гипотезе - предполагается, что днем в замыкающих клетках возрастает концентрация сахара, а в результате повышается осмотическое давление в клетках и поступление в них воды. Однако никому еще не удалось показать, что в замыкающих клетках накапливается достаточное количество сахара, чтобы вызвать наблюдаемые изменения осмотического давления. Недавно было установлено, что днем на свету в замыкающих клетках накапливаются ионы калия и сопутствующие им анионы; такого накопления ионов вполне достаточно, чтобы вызвать наблюдаемые изменения. В темноте ионы калия (К+) выходят из замыкающих клеток в прилегающие к ним клетки эпидермиса. До сих пор неясно, каким анионом уравновешивается положительный заряд иона калия. У некоторых (но не у всех) изученных растений отмечалось накопление большого количества анионов органических кислот типа малата. Одновременно уменьшаются в размере крахмальные зерна, которые появляются в темноте в хлоропластах замыкающих клеток. Это позволяет предполагать, что крахмал на свету превращается в малат.

У некоторых растений, например у Allium cepa (лук), в замыкающих клетках нет крахмала. Поэтому при открытых устьицах малат не накапливается, а катионы, по-видимому, поглощаются вместе с неорганическими анионами типа хлорида (Сl-).

Некоторые вопросы остаются нерешенными. Например, почему для открывания устьиц нужен свет? Какую роль играют хлоропласты, кроме запасания крахмала? Превращается ли малат в темноте обратно в крахмал? В 1979 г. было показано, что в хлоропластах замыкающих клеток Vicia faba (конские бобы) отсутствуют ферменты цикла Кальвина и система тилакоидов развита плохо, хотя хлорофилл и имеется. В результате не работает обычный С3 - путь фотосинтеза и не образуется крахмал. Это могло бы помочь объяснить, почему крахмал образуется не днем, как в обычных фотосинтезирующих клетках, а ночью. Другой интересный факт - отсутствие плазмодесм в замыкающих клетках, т.е. сравнительная изолированность этих клеток от остальных клеток эпидермиса.

движений.

Устьица выполняют две основные функции: осуществляют газообмен и транспирацию (испарение).

Устьице состоит из двух замыкающих клеток и устьичной щели между ними. К замыкающим примыкают побочные (околоустьичные) клетки. Под устьицем расположена воздушная полость. Устьица способны автоматически закрываться или открываться по мере необходимости. Это обусловлено тургорными явлениями.

Степень раскрытия устьиц зависит от интенсивности света, кол-ва воды в листе и угл.газа. в межклетниках, t воздуха и др.факторов. В зависимости от фактора, запускающего двигательный механизм (свет или начинающийся водный дефицит в тканях листа), различают фото- и гидроактивное движение устьиц. Существует также гидропаесивное движение, вызванное изменением оводненности клеток эпидермиса и не затрагивающее метаболизм замыкающих клеток. Например, глубокий водный дефицит может вызвать подвядание листа, эпидермальные клетки при этом, уменьшаясь в размерах, растягивают замыкающие клетки, и устьица открываются. Или, наоборот, сразу после дождя эпидермальные клетки настолько разбухают

от воды, что сдавливают замыкающие клетки, и устьица закрываются.

Гидропассивная р-ция - закрывание устьичных щелей, когда паренхимы клетки переполнены водой и механ.сдавливают замык.клетки

Гидроактивная открывания и закрывания - движения, вызванные изменением в содержании воды в замыкающих клетках устьиц.

Фотоактивная - проявл.в открытии устьиц на свету и закрывании в темноте.

13. Влияние внешних факторов на транспирацию

Транспирация - потеря влаги в виде испарения воды с поверхности листьев или других частей растения, осуществляется с помощью устьиц. При недостатке воды в почве интенсивность транспирации снижается.

Низкие температуры инактивируют ферменты, затрудняя поглощение воды и замедляя транспирацию. Высокие температуры способствуют перегреву листьев, усиливая транспирацию. С увеличением температуры интенсивность транспирации увеличивается. Температура - источник энергии для испарения воды. Охлаждающий эффект транспирации особенно значителен при высокой температуре, низкой влажности воздуха и хорошем водоснабжении. Кроме того, температура выполняет еще и регуляторную функцию, влияя на степень открытости устьиц.

Свет . На свету температура листа повышается и транспирация усиливается, а физиологическое действие света – это его влияние на движение устьиц – на свету растения траспирируют сильнее, чем в темноте. Влияние света на транспирацию связано, прежде всего, с тем, что зеленые клетки поглощают не только инфракрасные солнечные лучи, но и видимый свет, необходимый для фотосинтеза. В полной темноте устьица сначала полностью закрываются, а потом немного приоткрываются.

Ветер повышает транспирации из-за уноса паров воды, создавая их дефицит у поверхности листьев. Скорость ветра не так сильно влияет на транспирацию, как на испарение со свободной водной поверхности. Вначале при появлении ветра и увеличении его скорости транспирация возрастает, но дальнейшее усиление ветра почти не влияет на этот процесс.

Влажность воздуха . При избыточной влажности транспирация снижается (в теплицах), в сухом воздухе – повышается, чем меньше относительная влажность воздуха, тем ниже его водный потенциал и тем быстрее идет транспирация.при недостатке воды в листе включаются устьичная и внеустьичная регуляция, поэтому интенсивность транспирации увеличивается медленнее испарения воды с водной поверхности. При возникновении сильного водного дефицита транспирация может почти прекратиться, несмотря на увеличивающуюся сухость воздуха. С увеличением влажности воздуха транспирация уменьшается; при большой влажности воздуха происходит только гуттация.

Высокая влажность воздуха препятствует нормальному ходу транспирации, следовательно, отрицательно влияет на восходящий транспорт веществ по сосудам, регуляцию температуры растения, устьичные движения.

Водный дефицит – нехватка воды растениям.

Loading...Loading...