Применение жидких газов в технике. Обобщение знаний о газовых законах. Особенность газообразного состояния

Идеальный газ – физическая модель реального газа, представляющая

собой совокупность большого числа материальных точек, между которы-

ми отсутствует взаимодействие. В этой модели пренебрегают двумя свойствами реального газа:

1) наличие собственных размеров атомов и молекул; они считаются материальными точками;

2) наличие взаимодействия между частицами (притяжением на больших

расстояниях и отталкиванием на малых)

Как следствие этих пренебрежений реальные газы подчиняются законам идеального газа только при :

1) малых плотностях или концентрациях, когда можно пренебречь размерами молекул и их взаимодействием;

2) при температурах значительно выше температуры сжижения газа, когда кинетическая энергия значительно больше потенциальной энергии притяжения.

Уравнение состояния идеального газа связывает между собой основные термодинамические параметры газа .

Экспериментально для идеального газа получены два уравнения состояния: калорическое и термическое .

Калорическое уравнение связывает внутреннюю энергию газа с температурой:

где с – экспериментальная константа.

Термическое уравнение – уравнение Менделеева-Клапейрона.

Уравнение, устанавливающее связь между давлением, объемом и абсолютной температурой газов, было получено французским физиком Б. Клапейроном (1799-1864). В форме:

его впервые применил великий русский ученый Д.И. Менделеев, поэтому уравнение состояния газа называется уравнением Менделеева-Клапейрона.

Уравнение Менделеева можно записать через другие термодинамические параметры:

1 Так как , то .

2 Если учесть, что , то .

3 По определению плотности , следовательно .

4 По определению концентрации , тогда , , тогда:

основное уравнение МКТ ,

где – постоянная Больцмана, которая связывает энергию и температуру.

Уравнение Менделеева-Клапейрона справедливо только для идеальных газов.

Уравнение Менделеева-Клапейрона для неизменной массы газа запишется в виде:

.

Точное значение постоянной в правой части этого уравнения зависит от количества газа. Если количество газа равно одному молю, то соответствующая постоянная обозначается буквой R и называется универсальной газовой постоянной:

.

Это уравнение называют уравнением состояния идеального газа . Оно было получено в 1834 г. французским физиком и инженером Б. Клапейроном. Универсальную газовую постоянную еще называют газовой постоянной:


.

Для любой, но постоянной, массы газы из уравнения Менделеева-Клапейрона получаем обобщенный газовый закон: отношение произведения давления газа на объем к его температуре есть величина постоянная для неизменной массы газа:

.

Изотермический процесс –процесс изменения состояния газа при постоянной температуре: Τ = const . Для его осуществления надо сосуд с поршнем, наполненный газом, привести в контакт с термостатом, т.е. телом настолько большой массы, что она обеспечивает постоянство температуры газа, даже когда отдает газу или получает от него некоторое количество теплоты.

при постоянной температуре получается зависимость

или .

которая описывает закон Бойля-Мариотта: при постоянной температуре, неизменной массе и неизменном химическом составе газа произведение давления на объем есть величина постоянная.

Графики зависимости между параметрами данной массы при постоянной температуре называются изотермами . На рис. 1.1 изображены изотермы в ко

Т 2 >Т 1

ординатах (p , V ), (V , Τ ), (p , Т ).

Закон Бойля-Мариотта – один из основных газовых законов, открытый в 1662 году Робертом Бойлем (1627-1691) и независимо переоткрытый Эдмом Мариоттом (1620-1684) в 1676 году.

Важно уточнить, что в данном законе газ рассматривается, как идеальный. На самом деле, все газы в той или иной мере отличаются от идеального. Чем выше молярная масса газа, тем больше это отличие.

Изобарный процесс – процесс изменения состояния газа при постоянном давлении: p = const .

Количественное исследование зависимости объема газа от температуры при неизменном давлении было произведено в 1802 г. французским физиком и химиком Жозефом Луи Гей-Люссаком (1778-1850).

Из обобщенного газового закона

при постоянном давлении получается зависимость

или,

которая описывает закон Гей-Люссака: объем данной массы газа при постоянном давлении и постоянном химическом составе прямо пропорционален абсолютной температуре.

Графики зависимости между параметрами газа при постоянной массе газа и давлении называют изобарами (рис. 1.2).

р 1
p
T
р 1
р 2
V
p
р 1
р 2

Закон Гей-Люссака можно записать через температуру t

,

где V 0 – объем газа при 0 °С, α = 1/273 К -1 – температурный коэффициент объемного расширения, оказавшийся одинаковым для всех газов.

Изохорный процесс – процесс изменения состояния газа при постоянном объеме: V = const . Экспериментальным путем зависимость давления газа от температуры при постоянном объёме установлена в 1787 году французским физиком Жаком Шарлем (1746-1823) и уточнена Ж.Л. Гей-Люссаком в 1802 году.

Из обобщенного газового закона

при постоянном объеме получается зависимость

или,

которая описывает закон Шарля или второй закон Гей-Люссака: давление данной массы газа при постоянном объеме и постоянном химическом составе прямо пропорционально абсолютной температуре.

Закон Шарля или второй закон Гей-Люссака можно записать через температуру t , измеряемую по шкале Цельсия:

,

где р 0 – объем газа при 0 °С, β = 1/273 К -1 – температурный коэффициент давление, одинаковый для всех газов.

V 1
V
T
V 1
V 2
V
p
р 1
р 2

Графики зависимости между параметрами газа при постоянной массе газа и постоянном объеме называют изохорами (рис. 1.3).

Цели урока:

Образовательные:

  1. Подготовить учащихся к применению 1 закона термодинамики к различным изопроцессам.
  2. Изучить изопроцессы на установке для демонстрации процессов в газах.
  3. Научить учащихся решать аналитические и графические задачи, используя газовые законы.

Воспитательные:

  1. Продолжить формирование познавательного интереса учащихся; в целях интернационального воспитания обратить внимание учащихся, что физика развивается благодаря работам ученых различных стран и исторических времен;
  2. Продолжить формирование стремления к глубокому усвоению теоретических знаний через решение задач.

Развивающие:

  1. Активизация мыслительной деятельности (способом сопоставления), формирование алгоритмического мышления; развитие умений сравнивать, выявлять закономерности, обобщать, логически мыслить; научить применять полученные знания в нестандартных ситуациях для решения графических и аналитических задач
  2. Развитие умения самостоятельно решать проблемные ситуации.

Оборудование: Электроплитка, химический стакан, пробирка, прибор для изучения газовых законов, компьютер, проектор с экраном.

Ход урока

I. Разминка

а) «Хотите чаю?» – спросил хозяин дома, пришедшего к нему Шерлока Холмса.

– Да, – ответил гость.

– Вот и хорошо, – сказал хозяин, – сладкого?

–Да, – подтвердил Холмс.

– Я люблю горячий чай, поэтому кладу в него кусочки сахара только перед тем, как пить, – продолжил хозяин.

– Разумнее это делать раньше, сразу как вам налили чай, – посоветовал Шерлок Холмс.

Прав ли он?

Ответ : Прав. Если сахар положить сразу в горячий чай, его температура тут же понизится: чем меньше она будет отличаться от комнатной, тем медленней чай будет остывать. (тепловое равновесие)

б) Найти ошибки в рисунках, где m = const.

II. Повторение

а) изотермический процесс, изохорный процесс, изобарный процесс.

1. Работа с таблицей: Учащиеся имеют перед собой графики – для изотермического в координатах (р,V), для изохорного – (р,T), для изобарного – (V,T) и координатные системы без графиков. Учащиеся должны определить вид процесса, написать газовые законы и дорисовать остальные графики, а желающие – для двух различных значений. После выполнения работы графики проецируем на экран и каждый ученик проверяет работу своего соседа.

Графики должны иметь вид:

2. Показ опытов с помощью самодельного прибора : Перед учащимися создаем проблемную ситуацию - объяснить наблюдаемое явление.

а) Какие термодинамические параметры не изменяются?
б) Как происходит изменение других параметров?
в) Как называется данный процесс?

Для изучения процессов в газах применяем демонстрационную установку, показанную на следующем рисунке:

Для успешной работы прибора должна быть обеспечена герметичность, а вместо мультиметра М 838 можно использовать другой, который измеряет температуру по шкале Цельсия.

  • Демонстрация изотермического процесса . Рукой медленно поднимаем и опускаем поршень шприца, а температура остается постоянной.
  • Демонстрация изохорного процесса . Жидкостный манометр заменяем демонстрационным манометром и включаем электроплитку. Наблюдаем повышение температуры и давления газа.
  • Демонстрация изобарного процесса . Продолжаем нагревание. Когда сила давления газа на поршень будет достаточной, начнется изобарное расширение газа – поршень поднимается. Отмечаем неизменность показаний манометра, хотя температура газа растет.

Установка может служить моделью тепловой машины. На ней можно показать основные элементы любой тепловой машины, продемонстрировать простой цикл машины. Нагревателем служит электроплитка, холодильником – окружающий воздух, рабочим телом – газ в колбе и в шприце под поршнем. Опишем цикл машины, состоящий их двух изохор и из двух изобар.

Исходное состояние – поршень в нижнем положении, на котором стоит груз массой 10-20 г. Включаем электроплитку. Давление и температура газа начинают расти, что фиксируются манометром и мультиметром. Объем газа остается при этом остается постоянным до тех пор, пока сила давления на поршень не превышает веса поршня и груза. Рабочее тело совершает процесс (участок 1-2). Далее поршень поднимается при постоянном давлении газа (участок 2-3), показания манометра не меняются. Температура же продолжает расти. Рабочее тело на участке 1-2-3 получило от нагревателя некоторое количество теплоты Q 1 . Выключаем и убираем электроплитку. Убираем груз. Рабочее тело отдаст холодильнику некоторое количество теплоты Q 2 . При этом давление газа сначала уменьшится изохорно (участок 3-4) (пока сила давления газа больше веса поршня), потом изобарно (участок 4-1). Обращаем внимание учащихся на то, что давление на участке 4-1 меньше, чем на участке 2-3. Это четко видно из показаний манометра. Температура снова становится комнатной, что наблюдается по показаниям мультиметра. Цикл завершен, совешена работа по поднятию груза.

3. Решение экспериментальной задачи: Показываем следующий опыт – на электроплитку ставим высокий химический стакан с водой. Внутри воды находится перевернутая пробирка, частично заполненная водой. Резинкой отмечаем первоначальный уровень воды в пробирке. Можно сделать подсвет, ставя между установкой и лампой подсвета лист ватмана. По мере нагревания пробирка всплывает, охлаждается, касаясь с наружным воздухом и опускается на дно. Учащихся просим объяснить этот опыт.

(После нагревания воздуха в пробирке, он расширяется и вытесняет часть воды из пробирки. В результате уменьшается сила тяжести системы состоящей из пробирки и воды в ней. Как только сила тяжести станет меньше выталкивающей силы, пробирка всплывает.)

Этот опыт показываем ещё раз при изучении принципа действия тепловых машин.

IV. Применение газовых законов в жизни

Изотермическим можно приближенно считать процесс медленного сжатия воздуха или расширения газа под поршнем насоса при откачке его из сосуда. Правда температура газа при этом меняется, но в первом приближении этим изменением можно пренебречь. Однако газовые законы активно работают не только в технике, но и в живой природе, широко применяются в медицине. Закон Бойля-Мариотта начинает «работать на человека» (как, впрочем, и на любое млекопитающее) с момента его рождения, с первого самостоятельного вздоха. При дыхании межреберные мышцы и диафрагма периодически изменяют объем грудной клетки. Когда грудная клетка расширяется, давление воздуха в легких падает ниже атмосферного, т.е. «срабатывает» изотермический закон (pV = const), и вследствие образовавшегося перепада давлений происходит вдох. Другими словами воздух идет из окружающей среды в легкие самотеком до тех пор, пока величины давления в легких и в окружающей среде не выровняются. Выдох происходит аналогично: вследствие уменьшения объема легких давление воздуха в них становится больше, чем внешнее атмосферное, и за счет обратного перепада давлений он переходит наружу.

V. Фронтальный опрос

Работу выполняют на тех же листах, где учащиеся работали с графиками, на обратной стороне. Задачи решаются полностью.

  1. Газ находится в цилиндре с подвижным поршнем и при температуре 300К занимает объем 200 см 3 . Какой объем (в см 3) займет газ при температуре 270 К. Давление постоянно.
    а) 420, б) 222, в) 405, г) 180.
  2. Газ охладили при постоянном объеме от 127°С до 27°С. На сколько % надо после этого уменьшить объем газа в изотермическом процессе, чтобы давление стало равно первоначальному?
    а) 25, б) 125, в) 100, г) 75.
  3. Резиновую лодку надули утром, когда температура воздуха была 7°С. На сколько % увеличилось давление воздуха в лодке, если днем он прогрелся до 21°С? Объем лодки не изменился.
    а) 25, б) 10, в) 5 , г) 15, д) 20.
  4. На сколько % надо уменьшить абсолютную температуру газа при увеличении его объема в 6 раз, чтобы давление упало в 10 раз?
    а) 20, б) 30, в) 40 , г) 50, д) 10.
  5. На какой глубине объем пузырька воздуха, поднимающегося со дна водоема, в 2 раза меньше, чем на поверхности? Атмосферное давление 100 кПа. Температура не изменяется.
    а) 20 м, б) 15 м, в) 5 м, г) 10 м , д) 8 м.

VI . Подведение итогов

  1. Что нового узнали? Чему научились?
  2. Домашнее задание: §71, упр. 13(11) (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский «ФИЗИКА 10 класс ).

№ «___»__________ 20__г.

Применение газов в технике.

Цели:

Образовательная: Объяснить применение газов в технике с точки зрения газовых законов.

Развивающая: Развить умение учащихся применять данные знания на практике и в жизни.

Воспитательная: В целях развить научного мировоззрения учащихся показать роль физических экспериментов. Раскрыть причинно-следственные связи в изучаемом материале: применение газов в технике.

Оборудование:

Ход урока:

I .Проверка домашнего задания.

1. Стр106 упр9№1.

Дано:

Решение.

,
,
,

Ответ:

2. Запишите закон Шарля

(
)

3. Запишите закон Бойля-Мариотта

(
)

4. Запишите закон Гей-Люсака

(
)

5. Запишите уравнение Менделеева-Клайперона

(
)

II .Новый материал.

Газы обладают рядом уникальных свойств, которые позволяют использовать их в различных технических устройствах. Поведение газов в разных состояниях легко просчитать, используя уравнение состояния газа. Газы при разных давлениях ведут себя по-разному.

Газ, находящийся под большим давлением, представляет собой упругое тело.

Давление, оказываемое газом, можно определить из уравнения Менделеева-Клайперона:
.

Давление газа можно изменять, меняя его массу, объём и температуру. Отсюда следует, что давлением газа можно управлять, изменяя его объём, давление или массу.

Пример: Нагнетая насосом воздух в футбольную, волейбольную или велосипедную камеру, мы увеличиваем давление газа в ней.

Благодаря большой сжимаемости газа сила его давления мало изменяется при расширении или сжатии.

Хорошая сжимаемость газа позволяет помещать большие массы газов в малые объёмы для хранения.

Применение газов:

1.Газ как амортизатор. Камера автомобиля со сжатым газом представляет собой идеальный амортизатор, так как деформация шин гасится «газовой» пружиной.

2.Газ как рабочее тело двигателя. А)Газ заполняет камеру сгорания ДВС и сжимается до большого давления. Затем он зажигается, что приводит к ещё большему увеличению давления. Газ начинает расширяться и толкает поршень, совершая работу на всей длине рабочего хода поршня. Б)Сжатый воздух, находящийся в пневмосистемах, толкает поршень, открывая при этом двери в автобусах, метро, поездах. Аналогично работают пневматические тормоза автомобилей, железнодорожных вагонов. В)Сжатый воздух является рабочим телом пневматических молотков, применяемых в угольных шахтах, на строительстве. Г)Любое огнестрельное оружие работает, используя упругость продуктов сгорания пороха. Их сила давления выталкивает пулю из ствола, действуя на неё по всей длине канала, и сообщает ей огромную скорость.

3.Разрежённые газы. А)Сосуды для хранения жидких газов. Стенки сосуда изготавливают из материалов с плохой проводимостью. Между стенками создают глубокий вакуум, что обеспечивает ещё большую теплоизоляцию. Б)Глубокий вакуум нужен и в электронно-лучевых трубках и многих вакуумных приборах. В)В ускорителях элементарных частиц также создаётся глубокий вакуум.

4.Получение глубокого вакуума. Создают с помощью системы насосов.

III .Закрепление нового материала.

1. Почему сжатые газы называют ещё газовой пружиной?

2. Где применяются в технике газы?

3. Что вы понимаете под разрежённым газом?



Домашнее задание: §

Увеличение давления газа при его сжатии, приводящее к свойству, которое выше было названо упругостью, используется во многих механизмах. Предварительно сжатый газ, расширяясь, может совершать механическую работу. Кроме того, хорошая сжимаемость газов позволяет в относительно небольших объемах хранить значительные их количества. Таким образом, для многих производств необходим сжатый газ. Машина, служащая для сжатия газа до избыточного давления не ниже 0,2 МПа, называется компрессором. (Машины, сжимающие газ до меньшего давления, называются вентиляторами). Одним из видов компрессора является поршневой компрессор, основные части которого – это кривошипный механизм, цилиндр, клапаны и фильтр.

Сжатый воздух используется, в частности, в пневматических отбойных молотках – ручных машинах ударного действия, которые, в свою очередь, применяются для отделения горных пород от массива, разрыхления уплотненного грунта, разборки каменных или кирпичных кладок.

Очень хорошая сжимаемость воздуха и возможность регулировать давление, позволяет использовать его в качестве эффективного амортизатора.

Сжатый воздух используется для пневмотранспортировки по трубам грузов, заключенных в специальные капсулы.

На речном и морском транспорте используются суда на воздушной подушке.

Зависимость давления газа или его объема от температуры используется в газовых термометрах.

При сгорании горючей смеси в цилиндре, температура газа резко повышается, его давление возрастает, и газ, расширяясь, совершает работу.

Находят применение и разреженные газы. Например, доильная установка на крупной ферме работает за счет разряжения, создаваемого вакуумным насосом.

В медицине, для тренировки летчиков и космонавтов, используются барокамеры – герметично закрытые помещения, объемом от нескольких десятков литров до сотен кубометров, в которых можно установить повышенное или пониженное давление, создать искусственную атмосферу.

Свойство газов расширяться при нагревании и тем самым уменьшать свою плотность, было использовано еще в 1783 г. братьями Монгольфьер при постройке и запуске воздушного шара. Воздушные шары и по сей день запускают, нагревая воздух внутри их оболочки с помощью мощных горелок.

Газы с плотностью, меньшей чем у воздуха (водород, гелий), используются для создания подъемной силы в аэростатах. Для наблюдений, воздушных заграждений используются привязные аэростаты. Свободные аэростаты летают с экипажем или без него в направлении воздушных течений. Аэростаты, служащие для полетов в стратосферу, называются стратостатами.

Управляемые с помощью винтовых двигателей аэростаты называются дирижаблями. Дирижабли обладают очень большой грузоподъемностью и имеют большую дальность полета. Эти свойства дирижаблей позволяют использовать их в труднодоступных удаленных районах, для перевозки крупногабаритных уникальных грузов.

Любой объект, в котором используется газообразное вещество, можно отнести к газовым системам . Поскольку наиболее доступным газом является воздух, состоящий из смеси множества газов, то его широкое применение для выполнения различных процессов обусловлено самой природой. В переводе с греческого pneumatikos - воздушный, чем и объясняется этимологическое происхождение названия пневматические системы . В технической литературе часто используется более краткий термин - пневматика .

Пневматические устройства начали применять еще в глубокой древности (ветряные двигатели, музыкальные инструменты, кузнечные меха и пр.), но самое широкое распространение они получили вследствие создания надежных источников пневматической энергии - нагнетателей, способных придавать газам необходимый запас потенциальной и (или) кинетической энергии.

Пневматический привод , состоящий из комплекса устройств для приведения в действие машин и механизмов, является далеко не единственным направлением использования воздуха (в общем случае газа) в технике и жизнедеятельности человека. В подтверждение этого положения кратко рассмотрим основные виды пневматических систем, отличающихся как по назначению, так и по способу использования газообразного вещества.

По наличию и причине движения газа все системы можно разделить на три группы.

К первой группе отнесем системы с естественной конвекцией (циркуляцией) газа (чаще всего воздуха), где движение и его направление обусловлено градиентами температуры и плотности природного характера, например, атмосферная оболочка планеты, вентиляционные системы помещений, горных выработок, газоходов и т.п.

Ко второй группе отнесем системы с замкнутыми камерами , не сообщающимися с атмосферой, в которых может изменяться состояние газа вследствие изменения температуры, объема камеры, наддува или отсасывания газа. К ним относятся различные аккумулирующие емкости (пневмобаллоны), пневматические тормозные устройства (пневмобуферы), всевозможные эластичные надувные устройства, пневмогидравлические системы топливных баков летательных аппаратов и многие другие. Примером устройств с использованием вакуума в замкнутой камере могут быть пневмозахваты (пневмоприсоски), которые наиболее эффективны для перемещения штучных листовых изделий (бумага, металл, пластмасса и т.п.) в условиях автоматизированного и роботизированного производства.

К третьей группе следует отнести такие системы, где используется энергия предварительно сжатого газа для выполнения различных работ. В таких системах газ перемещается по магистралям с относительно большой скоростью и обладает значительным запасом энергии. Они могут быть циркуляционными (замкнутыми) и бесциркуляционными . В циркуляционных системах отработавший газ возвращается по магистралям к нагнетателю для повторного использования (как в гидроприводе). Применение систем весьма специфично, например, когда недопустимы утечки газа в окружающее пространство или невозможно применение воздуха из-за его окислительных свойств. Примеры таких систем можно найти в криогенной технике, где в качестве энергоносителя используются агрессивные, токсичные газы или летучие жидкости (аммиак, пропан, сероводород, гелий, фреоны и др.).

В бесциркуляционных системах газ может быть использован потребителем как химический реагент (например, в сварочном производстве, в химической промышленности) или как источник пневматической энергии. В последнем случае в качестве энергоносителя обычно служит воздух. Выделяют три основных направления применения сжатого воздуха.

К первому направлению относятся технологические процессы, где воздух выполняет непосредственно операции обдувки, осушки, распыления, охлаждения, вентиляции, очистки и т.п. Очень широкое распространение получили системы пневмотранспортирования по трубопроводам, особенно в легкой, пищевой, горнодобывающей отраслях промышленности. Штучные и кусковые материалы транспортируются в специальных сосудах (капсулах), а пылевидные в смеси с воздухом перемещаются на относительно большие расстояния аналогично текучим веществам.

Второе направление - использование сжатого воздуха в пневматических системах управления (ПСУ) для автоматического управления технологическими процессами (системы пневмоавтоматики). Это направление получило интенсивное развитие с 60-х годов благодаря созданию универсальной системы элементов промышленной пневмоавтоматики (УСЭППА). Широкая номенклатура УСЭППА (пневматические датчики, переключатели, преобразователи, реле, логические элементы, усилители, струйные устройства, командоаппараты и т.д.) позволяет реализовать на ее базе релейные, аналоговые и аналого-релейные схемы, которые по своим параметрам близки к электротехническим системам. Благодаря высокой надежности они широко используются для циклового программного управления различными машинами, роботами в крупносерийном производстве, в системах управления движением мобильных объектов.

Третьим направлением применения пневмоэнергии, наиболее масштабным по мощности, является пневматический привод, который в научном плане является одним из разделов обшей механики машин. У истоков теории пневматических систем стоял И.И. Артоболевский. Он был руководителем Института машиноведения (ИМАШ) в Ленинграде, где под его руководством в 40 - 60-х годах систематизировались и обобщались накопленные сведения по теории и проектированию пневмосистем. Одной из первых работ по теории пневмосистем была статья А.П. Германа "Применение сжатого воздуха в горном деле", опубликованная в 1933 г., где впервые движение рабочего органа пневмоустройства решается совместно с термодинамическим уравнением состояния параметров воздуха.

Loading...Loading...