§266. Цепная реакция деления. Цепная реакция

Цепная реакция - это самоподцерживающаяся химическая реакция, при которой первоначально появляющиеся продукты принимают участие в образовании новых продуктов. Цепные реакции протекают обычно с большой скоростью и нередко имеют характер взрыва.

Цепные реакции проходят три главные стадии: зарождения (инициирования), развития и обрыва цепи.

Рис. 9.13. Энергетический профиль реакции (график зависимости потенциальной энергии от координаты реакции), обнаруживающий минимум, который соответствует образованию интермедиата реакции.

Стадия инициирования. На этой стадии происходит образование интермедиатов (промежуточных продуктов). Интермедиатами могут быть атомы, ионы или нейтральные молекулы. Инициирование может осуществляться светом, ядерным излучением, термической (тепловой) энергией, анионами или катализаторами.

Стадия развития. На этой стадии промежуточные продукты реагируют с исходными реагентами, образуя новые интермедиаты и конечные продукты. Стадия развития в цепных реакциях повторяется много раз, что приводит к образованию большого числа конечных и промежуточных продуктов.

Стадия обрыва цепи. На этой стадии происходит окончательное расходование промежуточных продуктов или их разрушение. Вследствие этого реакция прекращается. Цепная реакция может оборваться самопроизвольно или под действием специальных веществ - ингибиторов.

Цепные реакции играют важную роль во многих отраслях химии, в частности в фотохимии, химии горения, реакциях ядерного деления и ядерного синтеза (см. гл. 1), в органической химии (см. гл. 17-20).

Фотохимия

Этот раздел химии охватывает химические процессы, связанные с воздействием света на вещество. Примером фотохимических процессов является фотосинтез.

Многие цепные реакции инициируются светом. Инициирующей частицей в этом случае служит фотон, который обладает энергией (см. разд. 1.2). Классический пример - реакция между водородом и хлором в присутствии света

Эта реакция протекает со взрывом. Она включает следующие три стадии.

Инициирование. На этой стадии происходит разрыв ковалентной связи в молекуле хлора, в результате чего образуются два атома, каждый с неспаренным электроном:

Реакция такого типа представляет собой гомолиз, или гемолитическое деление (см. разд. 17.3). Она является также примером фотолиза. Термин «фотолиз» означает фотохимическое разложение. Два образующихся атома хлора представляют собой промежуточные продукты (интермедиаты). Они являются радикалами. Радикал - это атом (или группа атомов), обладающий хотя бы одним неспаренным электроном. Следует отметить, что, хотя стадия инициирования - самая медленная стадия цепной реакции, она не определяет скорость всей цепной реакции.

Стадия развития. На этой стадии атомы хлора реагируют с молекулами водорода, образуя конечный продукт - хлороводород, а также водородные радикалы. Водородные радикалы вступают в реакцию с молекулами хлора; в результате образуются новые порции продукта и новые радикалы хлора:

Эти две реакции, в совокупности составляющие стадию развития, повторяются миллионы раз.

Стадия обрыва цепи. Цепная реакция окончательно прекращается в результате

таких реакций, как

Для поглощения энергии, которая выделяется при протекании этих реакций обрыва цепи, необходимо, чтобы в них принимало участие еще какое-либо третье тело. Этим третьим телом обычно являются стенки сосуда, в котором проводится реакция.

Квантовый выход

Поглощение одного фотона света молекулой хлора в описанной выше цепной реакции может приводить к образованию миллионов молекул хлороводорода. Отношение числа молекул продукта к числу квантов света (фотонов), инициирующих реакцию, называется квантовым выходом. Квантовый выход фотохимических реакций может иметь значения от единицы до нескольких миллионов. Высокий квантовый выход указывает на цепной характер происходящей реакции.

Импульсный фотолиз

Так называется методика, используемая для получения радикалов с концентрацией, достаточно высокой для их обнаружения. На рис. 9.14 показана упрощенная схема установки, используемой для импульсного фотолиза. На реакционную смесь воздействуют

Рис. 9.14. Импульсный фотолиз.

мощной вспышкой света из специального импульсного источника. Такой источник позволяет создавать вспышки света с энергией до 105 Дж и с продолжительностью порядка с или меньше. Современные методики импульсного фотолиза используют импульсные лазеры с продолжительностью вспышки порядка наносекунды (10-9 с). За протекающей в результате такой вспышки света реакцией можно проследить, регистрируя последовательность оптических спектров поглощения реакционной смеси. За первой вспышкой следует ряд вспышек от маломощного импульсного источника. Эти вспышки следуют друг за другом с интервалами порядка миллисекунд или микросекунд и позволяют записывать спектры поглощения реакционной смеси с такими интервалами времени.

Горение

Реакция с кислородом, приводящая к выделению тепловой энергии и света, называется горением. Горение обычно протекает как сложная последовательность радикальных реакций.

В качестве примера приведем горение водорода. При определенных условиях эта реакция протекает со взрывом. На рис. 9.15 представлены экспериментальные данные для реакции стехиометрической смеси водорода и кислорода в пирексовом реакторе. Заштрихованный участок диаграммы соответствует взрывной области этой реакции. Для реакции горения водорода этот участок диаграммы имеет форму взрывного полуострова. Область взрыва ограничена границами взрыва.

Рис. 9.15. Условия взрывного протекания реакции горения водорода:

Цепная ядерная реакция

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций , каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируется нейтронами , полученными при делении ядер в предыдущем поколении.

Механизм энерговыделения

Превращение вещества сопровождается выделением свободной энергии лишь в том случае, если вещество обладает запасом энергий. Последнее означает, что микрочастицы вещества находятся в состоянии с энергией покоя большей, чем в другом возможном, переход в которое существует. Самопроизвольному переходу всегда препятствует энергетический барьер , для преодоления которого микрочастица должна получить извне какое-то количество энергии - энергии возбуждения. Экзоэнергетическая реакция состоит в том, что в следующем за возбуждением превращении выделяется энергии больше, чем требуется для возбуждения процесса. Существуют два способа преодоления энергетического барьера: либо за счёт кинетической энергии сталкивающихся частиц, либо за счёт энергии связи присоединяющейся частицы.

Если иметь в виду макроскопические масштабы энерговыделения, то необходимую для возбуждения реакций кинетическую энергию должны иметь все или сначала хотя бы некоторая доля частиц вещества. Это достижимо только при повышении температуры среды до величины, при которой энергия теплового движения приближается к величине энергетического порога , ограничивающего течение процесса. В случае молекулярных превращений, то есть химических реакций , такое повышение обычно составляет сотни кельвинов, в случае же ядерных реакций - это минимум 10 7 К из-за очень большой высоты кулоновских барьеров сталкивающихся ядер. Тепловое возбуждение ядерных реакций осуществлено на практике только при синтезе самых лёгких ядер, у которых кулоновские барьеры минимальны (термоядерный синтез).

Возбуждение присоединяющимися частицами не требует большой кинетической энергии, и, следовательно, не зависит от температуры среды, поскольку происходит за счет неиспользованных связей, присущих частицам сил притяжения. Но зато для возбуждения реакций необходимы сами частицы. И если опять иметь в виду не отдельный акт реакции, а получение энергии в макроскопических масштабах, то это возможно лишь при возникновении цепной реакции. Последняя же возникает, когда возбуждающие реакцию частицы снова появляются как продукты экзоэнергетической реакции.

Цепные реакции

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы или радикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

Если в каждом акте реакции или в некоторых звеньях цепи появляется более одной частицы, то возникает разветвленная цепная реакция, ибо одна из вторичных частиц продолжает начатую цепь, а другие дают новые цепи, которые снова ветвятся. Правда, с процессом ветвления конкурируют процессы, приводящие к обрывам цепей, и складывающаяся ситуация порождает специфические для разветвленных цепных реакций предельные или критические явления. Если число обрывов цепей больше, чем число появляющихся новых цепей, то самоподдерживающаяся цепная реакция (СЦР) оказывается невозможной. Даже если её возбудить искусственно, введя в среду какое-то количество необходимых частиц, то, поскольку число цепей в этом случае может только убывать, начавшийся процесс быстро затухает. Если же число образующихся новых цепей превосходит число обрывов, цепная реакция быстро распространяется по всему объёму вещества при появлении хотя бы одной начальной частицы.

Область состояний вещества с развитием цепной самоподдерживающейся реакции отделена от области, где цепная реакция вообще невозможна, критическим состоянием . Критическое состояние характеризуется равенством между числом новых цепей и числом обрывов.

Достижение критического состояния определяется рядом факторов. Деление тяжелого ядра возбуждается одним нейтроном, а в результате акта деления появляется более одного нейтрона (например, для 235 U число нейтронов, родившихся в одном акте деления, в среднем равно 2,5). Следовательно, процесс деления может породить разветвленную цепную реакцию, носителями которой будут служить нейтроны. Если скорость потерь нейтронов (захватов без деления, вылетов из реакционного объёма и т. д.) компенсирует скорость размножения нейтронов таким образом, что эффективный коэффициент размножения нейтронов в точности равен единице, то цепная реакция идёт в стационарном режиме. Введение отрицательных обратных связей между эффективным коэффициентом размножения и скоростью энерговыделения позволяет осуществить управляемую цепную реакцию, которая используется, например, в ядерной энергетике . Если коэффициент размножения больше единицы, цепная реакция развивается экспоненциально; неуправляемая цепная реакция деления используется в ядерном оружии .

См. также

  • Цепная химическая реакция

Литература

  • Климов А. Н. Ядерная физика и ядерные реакторы. - М. Атомиздат, .
  • Левин В. Е. Ядерная физика и ядерные реакторы / 4-е изд. - М.: Атомиздат, .
  • Петунин В. П. Теплоэнергетика ядерных установок. - М.: Атомиздат, .

Wikimedia Foundation . 2010 .

Смотреть что такое "Цепная ядерная реакция" в других словарях:

    Chain nuclear reaction последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей меньшего, равного или… … Термины атомной энергетики

    цепная ядерная реакция - Последовательность ядерных реакций, возбуждаемых частицами (например, нейтронами), рождающимися в каждом акте реакции. В зависимости от среднего числа реакций, следующих за одной предыдущей меньшего, равного или превосходящего единицу реакция… …

    цепная ядерная реакция - grandininė branduolinė reakcija statusas T sritis fizika atitikmenys: angl. nuclear chain reaction vok. Kettenkernreaktion, f rus. цепная ядерная реакция, f pranc. réaction en chaîne nucléaire, f; réaction nucléaire en chaîne, f … Fizikos terminų žodynas

    Реакция деления атомных ядер тяжёлых элементов под действием нейтронов, в каждом акте к рой число нейтронов возрастает, так что может возникнуть самоподдерживающийся процесс деления. Напр., при делении одного ядра изотопа урана 235U под действием … Большой энциклопедический политехнический словарь

    Цепная ядерная реакция - реакция деления атомных ядер под действием нейтронов, в каждом акте которой испускается не менее одного нейтрона, что обеспечивает поддержание реакции. Используется как источник энергии в ядерных зарядах (взрывная Ц. я. р.) и ядерных реакторах… … Словарь военных терминов

    цепная ядерная реакция деления на нейтронах - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN divergent reaction … Справочник технического переводчика

    Самоподдерживающаяся цепная ядерная реакция - 7. Самоподдерживающаяся цепная ядерная реакция СЦР Цепная ядерная реакция, характеризующаяся значением эффективного коэффициента размножения, превышающим или равным единице

УРАВНЕНИЕ ЦЕПНОЙ РЕАКЦИИ. КЛАССИФИКАЦИЯ НЕЙРОНОВ

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ГАЗОРАЗРЯДНОГО СЧЕТЧИКА

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ИОНИЗАЦИОННОЙ КАМЕРЫ

В зависимости от подаваемого напряжения детектор может работать в режиме ионизационной камеры, пропорционального счётчика и счётчика Гейгера-Мюллера.

Простейшим ионизационным детектором является ионизационная камера , представляющая собой конденсатор, состоящий из двух параллельных пластин, пространство между которыми заполнено воздухом или газом. К электродам прикладывается напряжение порядка 100 вольт, что соответствует 1 участку ВАХ. При отсутствии ионизирующего излучения промежуток между электродами является диэлектриком и ток в цепи отсутствует.

При действии ионизирующего излучения между электродами происходит ионизация молекул и атомов газа и образование положительных и отрицательных ионов. Отрицательные ионы движутся к положительному электроду, а положительные ионы наоборот. В цепи возникает ток. Напряжение между электродами подбирается таким, чтобы все образовавшиеся ионы достигли электродов, не успев рекомбинироваться, но и не разогнались бы до такой степени, чтобы вызвать вторичную ионизацию.

Ионизационные камеры просты в эксплуатации, характеризуются высокой эффективностью регистрации, но недостатками является низкая чувствительность. Напряжение, подаваемое на электроды ионизационной камеры должно составлять порядка 100 В.


Газоразрядный счётчик представляет собой металлический или стеклянный цилиндр, внутренняя поверхность покрытая металлом, который является катодом. Вдоль оси цилиндра натягивается тонкая металлическая нить диаметром порядка 100 микрон, которая является анодом.

Пропорциональные счётчики работают при напряжениях, соответствующих участку 2 ВАХ. При напряжении 100‑1000 В между электродами создаётся высокая напряжённость электрического поля и образовавшиеся первичные ионы создают вторичную ионизацию атомов и молекул газа. В таких счётчиках величина тока зависит от уровня ионизирующего излучения.

Счётчики Гейгера-Мюллера работают на 3 участке ВАХ при напряжениях превышающих 1000 В. При действии ионизирующего излучения в пространстве между электродами образуются положительные ионы и отрицательные электроны, которые двигаясь к аноду создают вторичную ионизацию. За счёт высокой напряжённости электрического поля вблизи анода, связанной с малой его площадью, вторичные электроны ускоряются настолько, что вновь ионизируют газ. Число электронов возрастает лавинообразно, возникает коронный разряд, который действует после прекращения ионизирующего излучения. Заряд обрывается включением большого сопротивления 1 МОм.


Счётчики Гейгера-Мюллера характеризуются высокой эффективностью регистрации и большой амплитудой сигнала (около 40 вольт). Недостатки: малая разрешающая способность и большое время восстановления.


Уравнение цепной реакции:

где K – количество вторичных нейтронов (2-3); q – тепловая энергия

Цепная ядерная реакция заключается в том, что под воздействием нейтронов ядра атома урана распадаются на более лёгкие ядра, называемые осколки деления . При этом образуются вторичные нейтроны и выделяется тепловая энергия. Вторичные нейтроны вновь воздействуя на ядра урана приводят к их делению с образованием новых нейтронов и выделению энергии. Процесс повторяется, развивается лавинообразно и может привести к ядерному взрыву.

Однако такое представление ядерной реакции является идеализированным, т.к. в результате захвата нейтронов примесями и вылета нейтронов из активной области ядерная реакция может затухать.

Для характеристики процессов, протекающих в ядерной реакции, вводится понятие коэффициент размножения K , который равен отношению количества нейтронов в данный момент времени к количеству нейтронов в предыдущий момент времени.

К > 1 Ядерная реакция нарастает и может привести к взрыву

К < 1 Ядерная реакция затухает

К = 1 Ядерная реакция протекает стабильно

Классификация нейтронов в зависимости от величины их энергии:

УСЛОВИЯ ПРОТЕКАНИЯ ЯДЕРНОЙ РЕАКЦИИ :

1) Уран должен быть очищен от примесей и продуктов распада;

2) При цепной реакции на быстрых нейтронах необходимо обогащение естественного урана, где его концентрация составляет 0,7% до концентрации 15%.

3) При цепной реакции на тепловых нейтронах необходимо избежать резонансного захвата нейтроном ураном-238. Для этого используются замедлители, изготовленные из графита.

4) Система ядерного топлива и замедлитель должна быть чередующаяся, т.е. гетерогенная.

5) Система должна быть сферической;

6) Для осуществления ядерной реакции должно быть достаточным количество ядерного топлива. Минимальное значение ядерного топлива, при котором еще протекает ядерная реакция, называется критическая масса.

Испускаемые при делении ядер вторичные нейтроны могут вызвать новые акты деле­ния, что делает возможным осуществление цепной реакции деления - ядерной реак­ции, в которой частицы, вызывающие ре­акцию, образуются как продукты этой ре­акции. Цепная реакция деления характе­ризуется коэффициентом размножения k нейтронов, который равен отношению числа нейтронов в данном поколении к их числу в предыдущем поколении. Необхо­димым условием для развития цепной ре­акции деления является требование k 1.

Оказывается, что не все образующие­ся вторичные нейтроны вызывают после­дующее деление ядер, что приводит к уменьшению коэффициента размноже­ния. Во-первых, из-за конечных размеров активной зоны (пространство, где проис­ходит цепная реакция) и большой про­никающей способности нейтронов часть из них покинет активную зону раньше, чем будет захвачена каким-либо ядром. Во-вторых, часть нейтронов захватывается ядрами неделящихся примесей, всегда присутствующих в активной зоне. Кроме того, наряду с делением могут иметь место конкурирующие процессы радиационного захвата и неупругого рассеяния.

Коэффициент размножения зависит от природы делящегося вещества, а для дан­ного изотопа - от его количества, а также размеров и формы активной зоны. Мини­мальные размеры активной зоны, при ко­торых возможно осуществление цепной реакции, называются критическими разме­рами. Минимальная масса делящегося ве­щества, находящегося в системе критиче­ских размеров, необходимая для осуще­ствления цепной реакции, называется критической массой.

Скорость развития цепных реакций различна. Пусть Т - среднее время жизни одного поколения, а N - число нейтронов в данном поколении. В следующем поколе­нии их число равно kN, т. е. прирост числа нейтронов за одно поколение dN= kN-N=N (k- 1). Прирост же числа нейтро­нов за единицу времени, т. е. скорость

нарастания цепной реакции,

dN/dt=N(k-1)/T (266.1)

Интегрируя (266.1), получим

N=N 0 e (k-1)t/T ,

где No - число нейтронов в начальный момент времени, а N -их число в момент времени t. N определяется знаком (k-1). При k> 1 идет развивающаяся реакция, число делений непрерывно растет и реак­ция может стать взрывной. При k= 1 идет самоподдерживающаяся реакция, при ко­торой число нейтронов с течением времени не изменяется. При k<1 идет затухаю­щая реакция.

Цепные реакции делятся на управляе­мые и неуправляемые. Взрыв атомной бомбы, например, является неуправляемой реакцией. Чтобы атомная бомба при хра­нении не взорвалась, в ней 235 92 U (или 2 39 94 Pu) делится на две удаленные друг от друга части с массами ниже критических. Затем с помощью обычного взрыва эти массы сближаются, общая масса деляще­гося вещества становится больше крити­ческой и возникает взрывная цепная ре­акция, сопровождающаяся мгновенным выделением огромного количества энергии и большими разрушениями. Взрывная ре­акция начинается за счет имеющихся ней­тронов спонтанного деления или нейтро­нов космического излучения. Управляемые цепные реакции осуществляются в ядер­ных реакторах (см. §267).

В природе имеется три изотопа, кото­рые могут служить ядерным топливом (235 92 U: в естественном уране его содержится примерно 0,7 %) или сырьем для его полу­чения (232 90 Th и 238 92 U: в естественном уране его содержится примерно 99,3%). 232 90 Th служит исходным продуктом для получения искусственного ядерного топлива 233 92 U (см. реакцию (265.2)), a 238 92 U, поглощая нейтроны, посредством двух последова­тельных  - -распадов - для превращения в ядро 2 39 94 Pu:

Реакции (266.2) и (265.2), таким образом, открывают реальную возможность воспро­изводства ядерного горючего в процессе цепной реакции деления.

Теория относительности говорит, что масса - это особая форма энергии. Из этого следует, что можно преобразовать массу в энергию и энергию в массу. На внутриатомном уровне такие реакции имеют место. В частности, некоторое количество массы самого вполне может превратиться в энергию. Это происходит по нескольким путям. Во-первых, ядро может распасться на некоторое количество более мелких ядер, эта реакция называется «распадом». Во-вторых, более мелкие ядра могут запросто соединиться, чтобы получилось более крупное, - это реакция синтеза. Во Вселенной такие реакции весьма распространены. Достаточно сказать, что реакция синтеза - источник энергии для звезд. А вот реакция распада используется человечеством на так как люди научились контролировать эти сложные процессы. Но что же такое цепная ядерная реакция? Как ею управлять?

Что происходит в ядре атома

Цепная ядерная реакция - процесс, идущий при столкновении элементарных частиц или ядер с другими ядрами. Почему «цепная»? Это совокупность последовательных одиночных ядерных реакций. В результате этого процесса происходит изменение квантового состояния и нуклонного состава у исходного ядра, появляются даже новые частицы - продукты реакции. Цепная ядерная реакция, физика которой позволяет исследовать механизмы взаимодействия ядер с ядрами и с частицами, - это основной метод для получения новых элементов и изотопов. Для того чтобы понять протекание цепной реакции, надо вначале разобраться с одиночными.

Что нужно для реакции

Для того чтобы осуществить такой процесс, как цепная ядерная реакция, необходимо сблизить частицы (ядро и нуклон, два ядра) на расстояние радиуса сильного взаимодействия (примерно один ферми). Если расстояния большие, то взаимодействие заряженных частиц будет чисто кулоновским. В ядерной реакции соблюдаются все законы: сохранение энергии, момента, импульса, барионного заряда. Цепная ядерная реакция обозначается набором символов а, b, с, d. Символ а обозначает исходное ядро, b - налетающую частицу, с - новую вылетающую частицу, а d обозначает результирующее ядро.

Энергия реакции

Цепная ядерная реакция может проходить как с поглощением, так и с выделением энергии, которая равняется разности масс частиц после реакции и до нее. Поглощаемая энергия определяет минимальную кинетическую энергию столкновения, так называемый порог ядерной реакции, при которой она может свободно протекать. Данный порог зависит от частиц, которые участвуют во взаимодействии, и от их характеристик. На начальном этапе все частицы находятся в заранее определенном квантовом состоянии.

Осуществление реакции

Основным источником заряженных частиц, которыми бомбардируется ядро, является который дает пучки протонов, тяжелых ионов и легких ядер. Медленные нейтроны получают благодаря использованию ядерных реакторов. Для фиксации налетающих заряженных частиц могут быть использованы разные типы ядерных реакций - как синтеза, так и распада. Вероятность их зависит от параметров частиц, которые сталкиваются. С этой вероятностью связана такая характеристика, как сечение реакции - величина эффективной площади, которая характеризует ядро в качестве мишени для налетающих частиц и которая является мерой вероятности вступления частицы и ядра во взаимодействие. Если в реакции принимают участие частицы с ненулевым значением спина, то сечение напрямую зависит от их ориентации. Так как спины налетающих частиц ориентированы не совсем хаотично, а более-менее упорядоченно, то все корпускулы будут поляризованы. Количественная характеристика ориентированных спинов пучка описывается вектором поляризации.

Механизм реакции

Что такое цепная ядерная реакция? Как уже говорилось, это последовательность более простых реакций. Характеристики налетающей частицы и ее взаимодействия с ядром зависят от массы, заряда, кинетической энергии. Взаимодействие определяется степенью свободы ядер, которые и возбуждаются при столкновении. Получение контроля над всеми этими механизмами позволяет проводить такой процесс, как управляемая цепная ядерная реакция.

Прямые реакции

Если заряженная частица, которая налетает на ядро-мишень, только касается его, то длительность столкновения будет равна необходимому для преодоления расстояния радиуса ядра. Такую ядерную реакцию называют прямой. Общей характеристикой для всех реакций такого типа является возбуждение малого числа степеней свободы. В таком процессе после первого столкновения частица имеет еще достаточно энергии для преодоления ядерного притяжения. К примеру, такие взаимодействия, как неупругое рассеивание нейтронов, обмен заряда, и относятся к прямым. Вклад таких процессов в характеристику под названием "полное сечение" достаточно мизерный. Однако распределение продуктов прохождения прямой ядерной реакции позволяет определить вероятность вылета от угла направления пучка, селективность заселенных состояний и определить их структуру.

Предравновесная эмиссия

Если частица не покинет область ядерного взаимодействия после первого же столкновения, то она будет вовлечена в целый каскад из последовательных столкновений. Это фактически как раз то, что называется цепной ядерной реакцией. В результате такой ситуации кинетическая энергия частицы распределяется среди составляющих частей ядра. Само же состояние ядра будет постепенно сильно усложняться. Во время этого процесса на каком-то нуклоне или же целом кластере (группе нуклонов) может быть сконцентрирована энергия, достаточная для эмиссии этого нуклона из ядра. Дальнейшая релаксация приведет к формированию статистического равновесия и образования составного ядра.

Цепные реакции

Что такое цепная ядерная реакция? Это последовательность ее составных частей. То есть множественные последовательные единичные ядерные реакции, вызванные заряженными частицами, появляются как продукты реакции на предыдущих шагах. Что называется цепной ядерной реакцией? К примеру, деление тяжелых ядер, когда множественные акты деления инициируются полученными при предыдущих распадах нейтронами.

Особенности цепной ядерной реакции

Среди всех химических реакций большое распространение получили именно цепные. Частицы с неиспользованными связями выполняют роль свободных атомов или радикалов. При таком процессе, как цепная ядерная реакция, механизм ее протекания обеспечивают нейтроны, которые не имеют кулоновского барьера и возбуждают ядро при поглощении. Если в среде появляется необходимая частица, то она вызывает цепь последующих превращений, которые будут продолжаться до разрыва цепи из-за потери частицы-носителя.

Почему теряется носитель

Есть всего две причины потери частицы-носителя непрерывной цепи реакций. Первая заключается в поглощении частицы без процесса испускания вторичной. Вторая - уход частички за предел объема вещества, которое поддерживает цепной процесс.

Два типа процесса

Если в каждом периоде цепной реакции рождается исключительно единичная частичка-носитель, то можно назвать этот процесс неразветвленным. Она не может привести к выделению энергии в больших масштабах. Если же появилось много частиц-носителей, то это называется разветвленной реакцией. Что такое цепная ядерная реакция с разветвлением? Одна из полученных в предыдущем акте вторичных частиц продолжит начатую ранее цепь, а вот другие создадут новые реакции, которые тоже будут ветвиться. С этим процессом будут конкурировать приводящие к обрыву процессы. Полученная в результате ситуация будет порождать специфические критические и предельные явления. Например, если обрывов больше, чем чисто новых цепей, то самоподдерживание реакции будет невозможным. Даже если возбудить ее искусственно, введя в данную среду нужное количество частиц, то процесс все равно будет затухать со временем (обычно довольно быстро). Если же количество новых цепей будет превосходить количество обрывов, то цепная ядерная реакция начнет распространяться по всему веществу.

Критическое состояние

Критическим состоянием отделяют область состояния вещества с развитой самоподдерживающейся цепной реакцией, и область, где данная реакция невозможна вообще. Этот параметр характеризуется равенством между количеством новых цепей и числом возможных обрывов. Как и наличие свободной частицы-носителя, критическое состояние является основным пунктом в таком списке, как «условия осуществления цепной ядерной реакции». Достижение этого состояния может быть определено целым рядом возможных факторов. тяжелого элемента возбуждается всего одним нейтроном. В результате такого процесса, как цепная ядерная реакция деления, появляется больше нейтронов. Следовательно, этот процесс может произвести разветвленную реакцию, где носителями и будут выступать нейтроны. В том случае, когда скорость захватов нейтронов без деления или вылетов (скорость потери) будет компенсироваться скоростью размножения несущих частиц, то цепная реакция будет протекать в стационарном режиме. Это равенство характеризует коэффициент размножения. В приведенным выше случае он равен единице. В благодаря введению между скоростью выделения энергии и коэффициентом размножения возможно осуществить управление протеканием ядерной реакции. Если же этот коэффициент будет больше чем единица, то реакция будет развиваться по экспоненте. Неуправляемые цепные реакции используют в ядерном оружии.

Цепная ядерная реакция в энергетике

Реактивность реактора определяется большим количеством процессов, которые происходят в его активной зоне. Все эти влияния определяются так называемым коэффициентом реактивности. Влияние изменения температуры графитовых стержней, теплоносителей или урана на реактивность реактора и интенсивность протекания такого процесса, как цепная ядерная реакция, характеризуются температурным коэффициентом (по теплоносителю, по урану, по графиту). Также есть зависимые характеристики по мощности, по барометрическим показателям, по паровым показателям. Для поддержания ядерной реакции в реакторе необходимо превращение одних элементов в другие. Для этого нужно учитывать условия протекания цепной ядерной реакции - наличие вещества, которое способно делиться и выделять из себя при распаде некоторое количество элементарных частиц, которые, как следствие, будут вызывать деление остальных ядер. В качестве такого вещества зачастую используют уран-238, уран-235, плутоний-239. Во время прохождения цепной ядерной реакции изотопы данных элементов будут распадаться и образовывать два и более других химических веществ. При этом процессе излучаются так называемые «гамма»-лучи, происходит интенсивное выделение энергии, образуются два или три нейтрона, способные продолжить акты реакции. Различают медленные нейтроны и быстрые, ведь для того чтобы ядро атома распалось, эти частички должны пролететь с определенной скоростью.

Loading...Loading...