Импульс. Закон сохранения импульса. Закон сохранения импульса, кинетическая и потенциальные энергии, мощность силы

На этом уроке все желающие смогут изучить тему «Импульс. Закон сохранения импульса». Вначале мы дадим определение понятию импульса. Затем определим, в чём заключается закон сохранения импульса - один из главных законов, соблюдение которого необходимо, чтобы ракета могла двигаться, летать. Рассмотрим, как он записывается для двух тел и какие буквы и выражения используются в записи. Также обсудим его применение на практике.

Тема: Законы взаимодействия и движения тел

Урок 24. Импульс. Закон сохранения импульса

Ерюткин Евгений Сергеевич

Урок посвящен теме «Импульс и «закон сохранения импульса». Чтобы запускать спутники, нужно строить ракеты. Чтобы ракеты двигались, летали, мы должны совершенно точно соблюдать законы, по которым эти тела будут двигаться. Самым главным законом в этом смысле является закон сохранения импульса. Чтобы перейти непосредственно к закону сохранения импульса, давайте сначала определимся с тем, что такое импульс .

называют произведение массы тела на его скорость: . Импульс - векторная величина, направлен он всегда в ту сторону, в которую направлена скорость. Само слово «импульс» латинское и переводится на русский язык как «толкать», «двигать». Импульс обозначается маленькой буквой , а единицей измерения импульса является .

Первым человеком, который использовал понятие импульс, был . Импульс он попытался использовать как величину, заменяющую силу. Причина такого подхода очевидна: измерять силу достаточно сложно, а измерение массы и скорости - вещь достаточно простая. Именно поэтому часто говорят, что импульс - это количество движения. А раз измерение импульса является альтернативой измерения силы, значит, нужно связать эти две величины.

Рис. 1. Рене Декарт

Эти величины - импульс и силу - связывает между собой понятие . Импульс силы записывается как произведение силы на время, в течение которого эта сила действует: импульс силы . Специального обозначения для импульса силы нет.

Давайте рассмотрим взаимосвязь импульса и импульса силы. Рассмотрим такую величину, как изменение импульса тела, . Именно изменение импульса тела равно импульсу силы. Таким образом, мы можем записать: .

Теперь перейдем к следующему важному вопросу - закону сохранения импульса . Этот закон справедлив для замкнутой изолированной системы.

Определение: замкнутой изолированной системой называют такую, в которой тела взаимодействуют только друг с другом и не взаимодействуют с внешними телами.

Для замкнутой системы справедлив закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.

Обратимся к тому, как записывается закон сохранения импульса для системы из двух тел: .

Эту же формулу мы можем записать следующим образом: .

Рис. 2. Суммарный импульс системы из двух шариков сохраняется после их столкновения

Обратите внимание: данный закон дает возможность, избегая рассмотрения действия сил, определять скорость и направление движения тел. Этот закон дает возможность говорить о таком важном явлении, как реактивное движение.

Вывод второго закона Ньютона

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела можно получить второй и третий законы Ньютона. Импульс силы равен изменению импульса тела: . Затем массу выносим за скобки, в скобках остается . Перенесем время из левой части уравнения в правую и запишем уравнение следующим образом: .

Вспомните, что ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло. Если теперь вместо выражения подставить символ ускорения , то мы получаем выражение: - второй закон Ньютона.

Вывод третьего закона Ньютона

Запишем закон сохранения импульса: . Перенесем все величины, связанные с m 1 , в левую часть уравнения, а с m 2 - в правую часть: .

Вынесем массу за скобки: . Взаимодействие тел происходило не мгновенно, а за определенный промежуток. И этот промежуток времени для первого и для второго тел в замкнутой системе был величиной одинаковой: .

Разделив правую и левую часть на время t, мы получаем отношение изменения скорости ко времени - это будет ускорение первого и второго тела соответственно. Исходя из этого, перепишем уравнение следующим образом: . Это и есть хорошо известный нам третий закон Ньютона: . Два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Список дополнительной литературы:

А так ли хорошо знакомо вам количество движения? // Квант. — 1991. — №6. — С. 40-41. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. школы. — М.: Просвещение, 1990. — С. 110-118 Кикоин А.К. Импульс и кинетическая энергия // Квант. — 1985. — № 5. — С. 28-29. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - C. 284-307.

На этом уроке все желающие смогут изучить тему «Импульс. Закон сохранения импульса». Вначале мы дадим определение понятию импульса. Затем определим, в чём заключается закон сохранения импульса - один из главных законов, соблюдение которого необходимо, чтобы ракета могла двигаться, летать. Рассмотрим, как он записывается для двух тел и какие буквы и выражения используются в записи. Также обсудим его применение на практике.

Тема: Законы взаимодействия и движения тел

Урок 24. Импульс. Закон сохранения импульса

Ерюткин Евгений Сергеевич

Урок посвящен теме «Импульс и «закон сохранения импульса». Чтобы запускать спутники, нужно строить ракеты. Чтобы ракеты двигались, летали, мы должны совершенно точно соблюдать законы, по которым эти тела будут двигаться. Самым главным законом в этом смысле является закон сохранения импульса. Чтобы перейти непосредственно к закону сохранения импульса, давайте сначала определимся с тем, что такое импульс .

называют произведение массы тела на его скорость: . Импульс - векторная величина, направлен он всегда в ту сторону, в которую направлена скорость. Само слово «импульс» латинское и переводится на русский язык как «толкать», «двигать». Импульс обозначается маленькой буквой , а единицей измерения импульса является .

Первым человеком, который использовал понятие импульс, был . Импульс он попытался использовать как величину, заменяющую силу. Причина такого подхода очевидна: измерять силу достаточно сложно, а измерение массы и скорости - вещь достаточно простая. Именно поэтому часто говорят, что импульс - это количество движения. А раз измерение импульса является альтернативой измерения силы, значит, нужно связать эти две величины.

Рис. 1. Рене Декарт

Эти величины - импульс и силу - связывает между собой понятие . Импульс силы записывается как произведение силы на время, в течение которого эта сила действует: импульс силы . Специального обозначения для импульса силы нет.

Давайте рассмотрим взаимосвязь импульса и импульса силы. Рассмотрим такую величину, как изменение импульса тела, . Именно изменение импульса тела равно импульсу силы. Таким образом, мы можем записать: .

Теперь перейдем к следующему важному вопросу - закону сохранения импульса . Этот закон справедлив для замкнутой изолированной системы.

Определение: замкнутой изолированной системой называют такую, в которой тела взаимодействуют только друг с другом и не взаимодействуют с внешними телами.

Для замкнутой системы справедлив закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.

Обратимся к тому, как записывается закон сохранения импульса для системы из двух тел: .

Эту же формулу мы можем записать следующим образом: .

Рис. 2. Суммарный импульс системы из двух шариков сохраняется после их столкновения

Обратите внимание: данный закон дает возможность, избегая рассмотрения действия сил, определять скорость и направление движения тел. Этот закон дает возможность говорить о таком важном явлении, как реактивное движение.

Вывод второго закона Ньютона

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела можно получить второй и третий законы Ньютона. Импульс силы равен изменению импульса тела: . Затем массу выносим за скобки, в скобках остается . Перенесем время из левой части уравнения в правую и запишем уравнение следующим образом: .

Вспомните, что ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло. Если теперь вместо выражения подставить символ ускорения , то мы получаем выражение: - второй закон Ньютона.

Вывод третьего закона Ньютона

Запишем закон сохранения импульса: . Перенесем все величины, связанные с m 1 , в левую часть уравнения, а с m 2 - в правую часть: .

Вынесем массу за скобки: . Взаимодействие тел происходило не мгновенно, а за определенный промежуток. И этот промежуток времени для первого и для второго тел в замкнутой системе был величиной одинаковой: .

Разделив правую и левую часть на время t, мы получаем отношение изменения скорости ко времени - это будет ускорение первого и второго тела соответственно. Исходя из этого, перепишем уравнение следующим образом: . Это и есть хорошо известный нам третий закон Ньютона: . Два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Список дополнительной литературы:

А так ли хорошо знакомо вам количество движения? // Квант. — 1991. — №6. — С. 40-41. Кикоин И.К., Кикоин А.К. Физика: Учеб. для 9 кл. сред. школы. — М.: Просвещение, 1990. — С. 110-118 Кикоин А.К. Импульс и кинетическая энергия // Квант. — 1985. — № 5. — С. 28-29. Физика: Механика. 10 кл.: Учеб. для углубленного изучения физики / М.М. Балашов, А.И. Гомонова, А.Б. Долицкий и др.; Под ред. Г.Я. Мякишева. - М.: Дрофа, 2002. - C. 284-307.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса . Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона

Если эти тела взаимодействуют в течение времени t , то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны:

Применим к этим телам второй закон Ньютона:

Где и - импульсы тел в начальный момент времени, и - импульсы тел в конце взаимодействия. Из этих соотношений следует, что в результате взаимодействия двух тел их суммарный импульс не изменился:

Закон сохранения импульса:

Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Рис. 1.17.1 иллюстрирует закон сохранения импульса на примере нецентрального соударения двух шаров разных масс, один из которых до соударения находился в состоянии покоя.

Изображенные на рис. 1.17.1 вектора импульсов шаров до и после соударения можно спроектировать на координатные оси OX и OY . Закон сохранения импульса выполняется и для проекций векторов на каждую ось. В частности, из диаграммы импульсов (рис. 1.17.1) следует, что проекции векторов и импульсов обоих шаров после соударения на ось OY должны быть одинаковы по модулю и иметь разные знаки, чтобы их сумма равнялась нулю.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение .

При стрельбе из орудия возникает отдача - снаряд движется вперед, а орудие - откатывается назад. Снаряд и орудие - два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс (рис. 1.17.2). Если скорости орудия и снаряда обозначить через и а их массы через M и m , то на основании закона сохранения импульса можно записать в проекциях на ось OX

На принципе отдачи основано реактивное движение . В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью относительно ракеты. Обозначим массу выброшенных газов через m , а массу ракеты после истечения газов через M . Тогда для замкнутой системы «ракета + газы» на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия) можно записать:

где V - скорость ракеты после истечения газов. В данном случае предполагается, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно . На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью (рис. 1.17.3 (1)). В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM , где ΔM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна -ΔM > 0. Скорость газов в инерциальной системе OX будет равна Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен , а импульс испущенных газов равен . В момент времени t импульс всей системы был равен Предполагая систему «ракета + газы» замкнутой, можно записать:

Величиной можно пренебречь, так как |ΔM | << M . Разделив обе части последнего соотношения на Δt и перейдя к пределу при Δt →0, получаем:

Рисунок 1.17.3.

Ракета, движущаяся в свободном пространстве (без гравитации). 1 - в момент времени t . Масса ракеты М, ее скорость

2 - Ракета в момент времени t + Δt . Масса ракеты M + ΔM , где ΔM < 0, ее скорость масса выброшенных газов -ΔM > 0, относительная скорость газов скорость газов в инерциальной системе

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение
выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

где u - модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу Циолковского для конечной скорости υ ракеты:

где - отношение начальной и конечной масс ракеты.

Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ 1 = 7,9·10 3 м/с при u = 3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2-4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть равно 50.

Реактивное движение основано на законе сохранения импульса и это бесспорно. Только многие задачи решаются разными способами. Я предлагаю следующий. Простейший реактивный двигатель: камера, в которой с помощью сжигания топлива поддерживается постоянное давление, в нижнем днище камеры отверстие, через которое с определенной скоростью происходит истечение газа. Согласно закону сохранения импульса камера приходит в движение (прописные истины). Другой способ. В нижнем днище камеры отверстие, т.е. площадь нижнего днища меньше площади верхнего днища на площадь отверстия. Произведение давления на площадь дает силу. Сила, действующая на верхнее днище больше чем на нижнее (из-за разности площадей), получаем неуравновешенную силу, которая приводит камеру в движение. F = p (S1-S2) = pSотверстия, где S1 площадь верхнего днища, S2 площадь нижнего днища, Sотверстия площадь отверстия. Если решать задачи традиционным методом и предложенным мной результат будет один и тот же. Предложенный мной способ более сложен, но он объясняет динамику реактивного движения. Решение задач с помощью закона сохранения импульса более простое, но оно не дает понять откуда берется сила, приводящая камеру в движение.

Простые наблюдения и опыты доказывают, что покой и движение относительны, скорость тела зависит от выбора системы отсчета; по второму закону Ньютона независимо от того, находилось ли тело в покое или двигалось, изменение скорости его движения может происходить только под действием силы, т. е. в результате взаимодействия с другими телами. Однако существуют величины, которые могут сохраняться при взаимодействии тел. Такими величинами являются энергия и импульс .

Импульсом тела называют векторную физиче¬скую величину, являющуюся количественной характеристикой поступательного движения тел. Импульс обозначается . Импульс тела равен произведению массы тела на его скорость: . Направление вектора импульса р совпадает с направлением вектора скорости тела . Единица импульса - .

Для импульса системы тел выполняется закон сохранения, который справедлив только для замкнутых физических систем. В общем случае замкнутой называют систему, которая не обменивается энергией и массой с телами и полями, не входящими в нее. В механике замкнутой называют систему, на которую не действуют внешние силы или действие этих сил скомпенсировано. В этом случае , где - начальный импульс системы, а - конечный. В случае двух тел, входящих в систему, это выражение имеет вид , где - массы тел, а - скорости до взаимодействия, - скорости после взаимодействия (рис. 4). Эта формула и является математическим выражением закона сохранения импульса: импульс замкнутой физической системы сохраняется при любых взаимодействиях, происходящих внутри этой системы. Другими словами: в замкнутой физической системе геометрическая сумма импульсов тел до взаимодействия равна геометрической сумме импульсов этих тел после взаимодействия . В случае незамкнутой системы импульс тел системы не сохраняется. Однако если и системе существует направление, по которому внешние силы не действуют или их действие скомпенсировано, то сохраняется проекция импульса на это направление. Кроме того, если время взаимодействия мало (выстрел, взрыв, удар), то за это время даже в случае незамкнутой системы внешние силы незначительно изменяют импульсы взаимодействующих тел. Поэтому для практических расчетов в этом случае тоже можно применять закон сохранения импульса.

Экспериментальные исследования взаимодействий различных тел - от планет и звезд до атомов и элементарных частиц - показали, что в любой системе взаимодействующих тел при отсутствии действия со стороны других тел, не входящих в систему, или равенстве нулю суммы действующих сил геометрическая сумма импульсов тел действительно остается неизменной.

В механике закон сохранения импульса и законы Ньютона связаны между собой. Если на тело массой в течение времени действует сила и скорость его движения изменяется от до , то ускорение движения а тела равно . На основании второго закона Ньютона для силы можно записать , отсюда следует

. - векторная физическая величина, характеризующая действие на тело силы за некоторый промежуток времени и равная произведению силы на время ее действия, называется импульсом силы . Единица импульса силы - .

Закон сохранения импульса лежит в основе реактивного движения. Реактивное движение - это такое движение тела, которое возникает после отделения от тела его части.

Пусть тело массой покоилось. От тела отделилась какая-то его часть массой со скоростью Тогда оставшаяся часть придет в движение в противоположную сторону со скоростью , масса оставшейся части . Действительно, сумма импульсов обеих частей тела до отделения была равна нулю и после разделения будет равна нулю:

Отсюда .

Большая заслуга в развитии теории реактивного движения принадлежит К. Э. Циолковскому.

Он разработал теорию полета тела переменной массы (ракеты) в однородном поле тяготения и рассчитал запасы топлива, необходимые для преодоления силы земного притяжения; основы теории жид¬костного реактивного двигателя, а также элементы его конструкции; теорию многоступенчатых ракет, причем предложил два варианта: параллельный (несколько реактивных двигателей работают одновременно) и последовательный (реактивные двигатели работают друг за другом). К. Э. Циолковский строго научно доказал возможность полета в космос с помощью ракет с жидкостным реактивным двигателем, предложил специальные траектории посадки космических аппаратов на Землю, выдвинул идею создания межпланетных орбитальных станций и подробно рассмотрел условия жизни и жизнеобеспечения на них. Технические идеи Циолковского находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.

Распространенные ошибки

1. Встречались абитуриенты, допускавшие грубую ошибку при объяснении принципа действия реактивного двигателя. Они утверждали, что движение реактивного самолета обусловлено взаимодействием выбрасываемых газов и воздуха: самолет действует на воздух, а воздух, согласно третьему закону Ньютона,- на самолет, в результате чего он движется. Это, конечно, неверно. ДЕйствительной причиной движения реактивного самолета является взаимодействие истекающих из сопла газов, которые образуются при сгорании топлива. За счет большого давления в камере сгорания эти газы приобретают некоторый импульс, поэтому, согласно закону сохранения импуьса, самолет получает такой же по модулю, но противоположный по направлению импульс. Так что самолет не отталкивается от воздуха. Напротив, атмосферный воздух является лишь помехой движению самолета.

2. Некоторый учащиеся не могут дать полный и правильный ответ на вопрос: в какиз случаях можно применять закон сохранения импульса. Полезно запомнить следующие критерии его применимости:

  1. система тел замкнута, т.е. на тела этой системы не действуют внешние силы;
  2. на тела системы действуют внешние силы, но их векторная сумма равна нулю
  3. система не замкнута, но сумма проекций всех внешних сил на какую-либо координатную ось равна нулю; тогда остается постоянной и сумма проекций импульсов всех тел системы на эту ось.
  4. время взаимодействия тел мало (например, время удара, выстрела, взрыва); в этом случае импульсаом внешних сил можно пренебречь и рассматривать систему как замкнутую.

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​\(p \) ​, единицы измерения – (кг·м)/с .

Импульс тела – это количественная мера движения тела.
Направление импульса тела всегда совпадает с направлением скорости его движения.
Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​\(p_0 \) ​ – начальный импульс тела,
​\(p \) ​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​\(F\!\Delta t \) ​, единицы измерения - Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

Силы и ускорения: ​\(\vec{F}\uparrow\uparrow\vec{a} \) ​;
импульса тела и скорости: \(\vec{p}\uparrow\uparrow\vec{v} \) ​;
изменения импульса тела и силы: \(\Delta\vec{p}\uparrow\uparrow\vec{F} \) ;
изменения импульса тела и ускорения: \(\Delta\vec{p}\uparrow\uparrow\vec{a} \) .

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой .

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.
​\(F_1,F_2,F_3 \) ​ – внешние силы, действующие на тела;
\(F_{12}, F_{23}, F_{31}, F_{13}, F_{21}, F_{32} \) ​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются. Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​\(\Delta t \) ​.
Обозначим: ​\(v_0 \) ​ – начальные скорости тел, а ​\(v^{\prime} \) ​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.
Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.
Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигатели
Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.
Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры. Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление. В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.
Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм. В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок. Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.
Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​\(A \) ​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​\(\alpha \) ​

  • \(\alpha=0^{\circ},\, \cos\alpha=1,\, A=FS,\,A>0; \)

  • \(0^{\circ}<\alpha<90^{\circ},\, A=FS\cos\alpha,\,A>0; \)

  • \(\alpha=90^{\circ},\, \cos\alpha=0,\, A=0; \)

  • \(90^{\circ}<\alpha<180^{\circ},\, A=FS\cos\alpha,\,A<0; \)


\(\alpha=180^{\circ},\, \cos\alpha=-1,\, A=-FS,\,A<0; \)

Геометрический смысл механической работы

На графике зависимости ​\(F=F(S) \) ​ работа силы численно равна площади фигуры, ограниченной графиком, осью перемещения и прямыми, параллельными оси силы.

Формулы для вычисления работы различных сил

Работа силы тяжести:

Работа силы упругости:

Коэффициент полезного действия механизма (КПД) - это физическая величина, равная отношению полезной работы, совершенной механизмом, ко всей затраченной при этом работе.
Обозначение – ​\(\eta \) ​, единицы измерения – %.

​\(A_{\mathit{пол.}} \) ​ – полезная работа – это та работа, которую нужно сделать;
​\(A_{\mathit{зат.}} \) – затраченная работа – это та работа, что приходится делать на самом деле.

Важно!
КПД любого механизма не может быть больше 100%.

Мощность

Мощность – это количественная мера быстроты совершения работы.

Обозначение – ​\(N \) ​, единицы измерения – Вт (Ватт).
Мощность равна отношению работы к времени, за которое она была совершена: .

1 Вт – это мощность, при которой за 1 с совершается работа в 1 Дж:

1 л. с. (лошадиная сила) = 735 Вт.

Связь между мощностью и скоростью равномерного движения:

Таким образом, мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов.

Важно!
Если интервал времени стремится к нулю, то выражение представляет собой мгновенную мощность, определяемую через мгновенную скорость.

Работа как мера изменения энергии

Если система тел может совершать работу, то она обладает энергией.

Работа и изменение кинетической энергии (теорема о кинетической энергии)

Если под действием силы тело совершило перемещение и вследствие этого его скорость изменилась, то работа силы равна изменению кинетической энергии.
Силы, работа которых не зависит от формы траектории, называются консервативными .

Работа и изменение потенциальной энергии тела, поднятого над землей

Работа силы тяжести равна изменению потенциальной энергии, взятому с противоположным знаком.

Работа и изменение потенциальной энергии упруго деформированного тела

Работа силы упругости равна изменению потенциальной энергии, взятому с противоположным знаком.

Кинетическая энергия

Кинетическая энергия – это энергия, которой обладает тело вследствие своего движения.

Обозначение – ​\(W_k (E_k) \) ​, единицы измерения – Дж.

Кинетическая энергия равна половине произведения массы тела на квадрат его скорости:

Важно!
Так как кинетическая энергия отдельного тела определяется его массой и скоростью, то она не зависит от того, взаимодействует ли это тело с другими телами или нет. Значение кинетической энергии зависит от выбора системы отсчета, как и значение скорости. Кинетическая энергия системы тел равна сумме кинетических энергий отдельных тел, входящих в эту систему.

Потенциальная энергия

Потенциальная энергия – это энергия взаимодействия тел или частей одного и того же тела.

Обозначение – ​\(W_p (E_p) \) ​, единицы измерения – Дж.

Потенциальная энергия тела, поднятого на некоторую высоту над землей, равна произведению массы тела, ускорения свободного падения и высоты, на которой он находится:

Потенциальная энергия упруго деформированного тела равна половине произведения жесткости на квадрат удлинения:

Важно!
Величина потенциальной энергии зависит от выбора нулевого уровня. Нулевым называется уровень, на котором потенциальная энергия равна нулю. Нулевой уровень выбирается произвольно, исходя из удобства решения задачи.

Полная механическая энергия – это энергия, равная сумме кинетической и потенциальной энергий.

Обозначение – ​\(W (E) \) ​, единицы измерения – Дж.

Закон сохранения механической энергии
В замкнутой системе тел, между которыми действуют только консервативные силы, механическая энергия сохраняется, т. е. не изменяется с течением времени:

Если между телами системы действуют кроме сил тяготения и упругости другие силы, например сила трения или сопротивления, действие которых приводит к превращению механической энергии в тепловую, то в такой системе тел закон сохранения механической энергии не выполняется.

Важно!
В случае, если кроме консервативных сил (тяжести, упругости, тяготения) существуют еще и неконсервативные силы, например сила трения, а также внешние силы, то

Теорема о кинетической энергии справедлива для сил любой природы:

Если на систему тел действуют неконсервативные и внешние силы, то изменение полной энергии равно сумме работ неконсервативных и внешних сил.

Закон сохранения и превращения энергии
Энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой или передается от одного тела к другому.

Основные формулы по теме «Законы сохранения в механике»

Loading...Loading...