Огнестойкость многопустотных плит перекрытия. Как повысить огнестойкость железобетонных покрытий и перекрытий? Предел огнестойкости железобетонной плиты перекрытия

Самый распространенный материал в
строительстве — это железобетон. Он сочетает в себе бетон и стальную арматуру,
рационально уложенную в конструкции для восприятия растягивающих и сжимающих
усилий.

Бетон хорошо сопротивляется сжатию и
хуже – растяжению. Эта особенность бетона неблагоприятна для изгибаемых и
растянутых элементов. Наиболее распространенными изгибаемыми элементами здания
являются плиты и балки.

Для компенсации неблагоприятных
процессов бетона, конструкции принято армировать стальной арматурой. Армируют
плиты сварными сетками, состоящими из стержней, расположенных в двух взаимно
перпендикулярных направлениях. Сетки укладывают в плитах таким образом, что
стержни их рабочей арматуры располагались вдоль пролета и воспринимали
растягивающие усилия, возникающие в конструкциях при изгибе под нагрузкой, в
соответствии с эпюрой изгибающих нагрузок.

В
условиях пожара плиты подвергаются воздействию высокой температуры снизу,
уменьшение их несущей способности происходит в основном за счет снижения
прочности нагревающейся растянутой арматуры. Как правило, такие элементы
разрушаются в результате образования пластического шарнира в сечении с
максимальным изгибающим моментом за счет снижения предела прочности
нагревающейся растянутой арматуры до величины рабочих напряжений в ее сечении.

Обеспечение пожарной
безопасности здания требует усиления огнестойкости и огнесохранности
железобетонных конструкций. Для этого используются следующие технологии:

  • армирование плит производить
    только вязаными или сварными каркасами, а не отдельными стержнями россыпью;
  • во избежание выпучивания продольной арматуры при ее нагреве во
    время пожара необходимо предусмотреть конструктивное армирование хомутами или
    поперечными стержнями;
  • толщина нижнего защитного слоя бетона перекрытия должна быть
    достаточной для того, чтобы он прогревался не выше 500°С и после пожара не
    оказывал влияние на дальнейшую безопасную эксплуатацию конструкции.
    Исследованиями установлено, что при нормируемом пределе огнестойкости R=120, толщина
    защитного слоя бетона должна быть не менее 45 мм, при R=180 - не менее 55 мм,
    при R=240 - не менее 70 мм;
  • в защитном слое бетона на глубине 15–20 мм со стороны нижней
    поверхности перекрытия следует предусмотреть противооткольную арматурную сетку
    из проволоки диаметром 3 мм с размером ячейки 50–70 мм, снижающую интенсивность
    взрывообразного разрушения бетона;
  • усиление приопорных участков тонкостенных перекрытий поперечной
    арматурой, не предусмотренной обычным расчетом;
  • увеличение предела огнестойкости за счет расположения плит,
    опертых по контуру;
  • применение специальных штукатурок (с использованием асбеста и
    перлита, вермикулита). Даже при малых величинах таких штукатурок (1,5 — 2 см)
    огнестойкость железобетонных плит увеличивается в несколько раз (2 — 5);
  • увеличение предела огнестойкости за счет подвесного потолка;
  • защита узлов и сочленений конструкций слоем бетона с требуемым
    пределом огнестойкости.

Эти меры обеспечат должную противопожарную безопасность здания.
Железобетонная конструкция приобретет необходимую огнестойкость и
огнесохранность.

Используемая литература:
1.Здания и сооружения, и их устойчивость
при пожаре. Академия ГПС МЧС России, 2003
2. МДС 21-2.2000.
Методические рекомендации по расчету огнестойкости железобетонных конструкций.
- М. : ГУП «НИИЖБ», 2000. - 92 с.

Таблица 2.18

Легкий бетон плотностью? = 1600 кг/м3 с крупным заполнителем из керамзита, плиты с круглыми пустотами количеством 6 шт., опирание плит - свободное, по двум сторонам.

1. Определим эффективную толщину многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия:

где - толщина плиты, мм;

  • - ширина плиты, мм;
  • - количество пустот, шт.;
  • - диаметр пустот, мм.
  • 2. Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из тяжелого бетона часть с эффективной толщиной 140 мм:

Предел огнестойкости плиты по потере теплоизолирующей способности

3. Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

где - толщина защитного слоя бетона, мм;

  • - диаметр рабочей арматуры, мм.
  • 4. По табл. 8 Пособия определяем предел огнестойкости плиты по потере несущей способности при а = 24 мм, для тяжелого бетона и при опирании по двум сторонам.

Искомый предел огнестойкости находится в интервале между 1 ч и 1,5 ч, определяем его методом линейной интерполяции:

Предел огнестойкости плиты без учёта поправочных коэффициентов - 1,25 ч.

  • 5. Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:
  • 6. Определяем полную нагрузку на плиту, как сумму постоянной и временной нагрузок:
  • 7. Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8. Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

  • 9. По п. 2.18 (ч. 1 а) Пособия принимаем коэффициент? для арматуры А-VI:
  • 10. Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет R 98.

За предел огнестойкости плиты принимаем меньшее из двух значений - по потере теплоизолирующей способности (180 мин) и по потере несущей способности (98мин).

Вывод: предел огнестойкости железобетонной плиты составляет REI 98

Как было сказано выше, предел огнестойкости изгибаемых железобетонных конструкций может наступить из-за прогрева до критической температуры рабочей арматуры находящейся в растянутой зоне.

В связи с этим, расчет огнестойкости многопустотной плиты перекрытия будем определять по времени прогрева до критической температуры растянутой рабочей арматуры.

Сечение плиты представлено на рис.3.8.

b p b p b p b p b p

h h 0

A s

Рис.3.8. Расчетное сечение многопустотной плиты перекрытия

Для расчета плиты ее сечение приводится к тавровому (рис.3.9).

f

x tem ≤h´ f

f

h h 0

x tem >h´ f

A s

a ∑b р

Рис.3.9. Тавровое сечение многопустотной плиты для расчета ее на огнестойкость

Последовательность

расчета предела огнестойкости плоских изгибаемых многопустотных железобетонных элементов


3. Если, то  s , tem определяется по формуле

Где вместо b используется ;

Если
, то ее необходимо пересчитать по формуле:

    По 3.1.5 определяется t s , cr (критическая температура).

    Вычисляется функция ошибок Гаусса по формуле:

    По 3.2.7 находится аргумент функции Гаусса.

    Вычисляется предел огнестойкости П ф по формуле:

Пример №5.

Дано. Многопустотная плита перекрытия, свободно опирающаяся по двум сторонам. Размеры сечения: b =1200 мм, длина рабочего пролета l = 6 м, высота сечения h = 220 мм, толщина защитного слоя а l = 20 мм, растянутая арматура класса А-III, 4 стержня Ø14 мм; тяжелый бетон класса В20 на известняковом щебне, весовая влажность бетона w = 2%, средняя плотность бетона в сухом состоянии ρ = 2300 кг/м 3 , диаметр пустот d n = 5,5 кН/м.

Определить фактический предел огнестойкости плиты.

Решение:


Для бетона класса В20 R bn = 15 МПа (п. 3.2.1.)

R bu = R bn /0,83 = 15/0,83 = 18,07МПа

Для класса арматуры А-III R sn = 390 МПа (п. 3.1.2.)

R su = R sn /0,9 = 390/0,9 = 433,3 МПа

A s = 615 мм 2 = 61510 -6 м 2




    Теплофизические характеристики бетона:

λ tem = 1.14 – 0,00055450 = 0,89 Вт/(м·˚С)

с tem = 710 + 0,84450 = 1090 Дж/(кг·˚С)

k = 37,2 п.3.2.8.

k 1 = 0,5 п.3.2.9. .

    Определяется фактический предел огнестойкости:

С учетом пустотности плиты ее фактический предел огнестойкости необходимо умножить на коэффициент 0,9 (п.2.27. ).

Литература

    Шелегов В.Г., Кузнецов Н.А. «Здания, сооружения и их устойчивость при пожаре». Учебное пособие по изучению дисциплины.– Иркутск.: ВСИ МВД России, 2002. – 191 с.

    Шелегов В.Г., Кузнецов Н.А. Строительные конструкции. Справочное пособие по дисциплине «Здания, сооружения и их устойчивость при пожаре». – Иркутск.: ВСИ МВД России, 2001. – 73 с.

    Мосалков И.Л. и др. Огнестойкость строительных конструкций: М.: ЗАО «Спецтехника», 2001. - 496 с., илл

    Яковлев А.И. Расчет огнестойкости строительных конструкций. – М.: Стройиздат, 1988.- 143с., ил.

    Шелегов В.Г., Чернов Ю.Л. «Здания, сооружения и их устойчивость при пожаре». Пособие по выполнению курсового проекта. – Иркутск.: ВСИ МВД России, 2002. – 36 с.

    Пособие по определению пределов огнестойкости конструкций, пределов распространения огня по конструкциям и групп возгораемости материалов (к СНиП II-2-80), ЦНИИСК им. Кучеренко. – М.: Стройиздат, 1985. – 56 с.

    ГОСТ 27772-88: Прокат для строительных стальных конструкций. Общие технические условия/ Госстрой СССР. – М., 1989

    СНиП 2.01.07-85*. Нагрузки и воздействия/ Госстрой СССР. – М.: ЦИТП Госстроя СССР, 1987. – 36 с.

    ГОСТ 30247.0 – 94. Конструкции строительные. Методы испытания на огнестойкость. Общие требования.

    СНиП 2.03.01-84*. Бетонные и железобетонные конструкции / Минстрой России. – М.: ГП ЦПП, 1995. – 80 с.

1ЭЛЛИНГ – сооружение на берегу со специально устроенным наклонным фундаментом (стапелем ), где закладывается и строится корпус судна.

2 ПУТЕПРОВОД – мост через сухопутные пути (или над сухопутным путём) на месте их пересечения. Обеспечивается движение по ним в разных уровнях.

3ЭСТАКАДА – сооружение в виде моста для проведения одного пути над другим в месте их пересечения, для причала судов, а также вообще для создания дороги на некоторой высоте.

4 РЕЗЕРВУАР – вместилище для жидкостей и газов.

5 ГАЗГОЛЬДЕР – сооружение для приемки, хранения и отпуска газа в газопроводную сеть.

6доменная печь - шахтная печь для выплавки чугуна из железной руды.

7Критическая температура – температура, при которой нормативное сопротивление металлаR un уменьшается до величины нормативного напряжения n от внешней нагрузки на конструкцию, т.е. при которой наступает потеря несущей способности.

8Нагель -деревянный или металлический стержень, применяемый для скрепления частей деревянных конструкций.

Определение пределов огнестойкости строительных конструкций

Определение предела огнестойкости железобетонных конструкций

Исходные данные для железобетонной плиты перекрытия приведены в таблице 1.2.1.1

Вид бетона - легкий бетон плотностью с = 1600 кг/м3 с крупным заполнителем из керамзита; плиты многопустотные, с круглыми пустотами, количество пустот - 6 шт, опирание плит - по двум сторонам.

1) Эффективная толщина многопустотной плиты tэф для оценки предела огнестойкости по теплоизолирующей способности согласно п. 2.27 Пособия к СНиП II-2-80 (Огнестойкость):

2) Определяем по табл. 8 Пособия предел огнестойкости плиты по потере теплоизолирующей способности для плиты из легкого бетона с эффективной толщиной 140 мм:

Предел огнестойкости плиты 180 мин.

3) Определим расстояние от обогреваемой поверхности плиты до оси стержневой арматуры:

4) По таблице 1.2.1.2 (табл. 8 Пособия) определяем предел огнестойкости плиты по потере несущей способности при а = 40 мм, для легкого бетона при опирании по двум сторонам.

Таблица 1.2.1.2

Пределы огнестойкости железобетонных плит


Искомый предел огнестойкости 2 ч или 120 мин.

5) Согласно п. 2.27 Пособия для определения предел огнестойкости пустотных плит применяется понижающий коэффициент 0,9:

6) Определяем полную нагрузку на плит, как сумма постоянной и временной нагрузок:

7) Определяем отношение длительно действующей части нагрузки к полной нагрузке:

8) Поправочный коэффициент по нагрузке согласно п. 2.20 Пособия:

9) По п. 2.18 (ч. 1 б) Пособия принимаем коэффициент для арматуры

10) Определяем предел огнестойкости плиты с учётом коэффициентов по нагрузке и по арматуре:

Предел огнестойкости плиты по несущей способности составляет

Исходя из результатов полученных в ходе расчетов мы получили, что предел огнестойкости железобетонной плиты по несущей способности 139 мин., а по теплоизолирующей способности 180 мин. Необходимо брать наименьший предел огнестойкости.

Вывод: предел огнестойкости железобетонной плиты REI 139.

Определение пределов огнестойкости железобетонных колонн

Вид бетона - тяжелый бетон плотностью с = 2350 кг/м3 с крупным заполнителем из карбонатных пород (известняк);

В таблице 1.2.2.1 (табл. 2 Пособия) приведены значения фактических пределов огнестойкости (ПОф) железобетонных колонн с различными характеристиками. При этом ПОф определяется не по толщине защитного слоя бетона, а по расстоянию от поверхности конструкции до оси рабочего арматурного стержня (), которое включает помимо толщины защитного слоя еще и половину диаметра рабочего арматурного стержня.

1) Определяем расстояние от обогреваемой поверхности колонны до оси стержневой арматуры по формуле:

2) Согласно п. 2.15 Пособия для конструкций из бетона с карбонатным заполнителем размер поперечного сечения допускается уменьшать на 10 % при том же пределе огнестойкости. Тогда ширину колонны определим по формуле:

3) По таблице 1.2.2.2 (табл. 2 Пособия) определяем предел огнестойкости для колонны из легкого бетона с параметрами: b = 444 мм, а = 37 мм при обогреве колонны со всех сторон.

Таблица 1.2.2.2

Пределы огнестойкости железобетонных колонн


Искомый предел огнестойкости находится в интервале между 1,5 ч и 3 ч. Для определения предела огнестойкости применяем метод линейной интерполяции. Данные приведены в таблице 1.2.2.3

Железобетонные конструкции благодаря их негорючести и сравнительно небольшой теплопроводности довольно хорошо сопротивляются воздействию агрессивных факторов пожара. Однако они не могут беспредельно сопротивляться пожару. Современные железобетонные конструкции, как правило, выполняют тонкостенными, без монолитной связи с другими элементами здания, что ограничивает их способность осуществлять свои рабочие функции в условиях пожара до 1 ч, а иногда и менее. Еще меньшим пределом огнестойкости обладают увлажненные железобетонные конструкции. Если повышение влажности конструкции до 3,5% увеличивает предел огнестойкости, то дальнейшее повышение влажности бетона плотностью более 1200 кг/м 3 при кратковременном действии пожара может вызвать взрыв бетона и быстрое разрушение конструкции.

Предел огнестойкости железобетонной конструкции зависит от размеров ее сечения, толщины защитного слоя, вида, количества и диаметра арматуры, класса бетона и вида заполнителя, нагрузки на конструкцию и схемы ее опирания.

Предел огнестойкости ограждающих конструкций по прогреву - противоположной огню поверхности на 140°С (перекрытия, стены, перегородки) зависит от их толщины, вида бетона и его влажности. С увеличением толщины и уменьшением плотности бетона предел огнестойкости возрастает.

Предел огнестойкости по признаку потери несущей способности зависит от вида и статической схемы опирания конструкции. Однопролетные свободно опертые изгибаемые элементы (балочные плиты, панели и настилы перекрытий, балки, прогоны) при действии пожара разрушаются в результате нагревания продольной нижней рабочей арматуры до предельной критической температуры. Предел огнестойкости этих конструкций зависит от толщины защитного слоя нижней рабочей арматуры, класса арматуры, рабочей нагрузки и теплопроводности бетона. У балок и прогонов предел огнестойкости зависит еще от ширины сечения.

При одних и тех же конструктивных параметрах предел огнестойкости балок меньше, чем плит, так как при пожаре балки обогреваются с трех сторон (со стороны нижней и двух боковых граней), а плиты - только со стороны нижней поверхности.

Наилучшей арматурной сталью с точки зрения огнестойкости является сталь класса А-III марки 25Г2С. Критическая температура этой стали в момент наступления предела огнестойкости конструкции, загруженной нормативной нагрузкой, составляет 570°С.

Выпускаемые заводами крупнопустотные предварительно напряженные настилы из тяжелого бетона с защитным слоем 20 мм и стержневой арматурой из стали класса А-IV имеют предел огнестойкости 1 ч, что позволяет использовать данные настилы в жилых зданиях.

Плиты и панели сплошного сечения из обычного железобетона при защитном слое 10 мм имеют пределы огнестойкости: арматура из стали классов А-I и А-II - 0,75 ч; А-III (марки 25Г2С) - 1 ч.

В ряде случаев тонкостенные изгибаемые конструкции (пустотные и ребристые панели и настилы, ригели и балки при ширине сечения 160 мм и менее, не имеющие вертикальных каркасов у опор) при действии пожара могут разрушаться преждевременно по косому сечению у опор. Такой характер разрушения предотвращают путем установки на приопорных участках данных конструкций вертикальных каркасов длиной не менее 1/4 пролета.

Плиты, опертые по контуру, имеют предел огнестойкости значительно выше, чем простые изгибаемые элементы. Эти плиты армированы рабочей арматурой в двух направлениях, поэтому их огнестойкость зависит дополнительно от соотношения арматуры в коротком и длинном пролетах. У квадратных плит, имеющих данное соотношение, равное единице, критическая температура арматуры при наступлении предела огнестойкости составляет 800°С.

С увеличением соотношения сторон плиты критическая температура уменьшается, следовательно, снижается и предел огнестойкости. При соотношениях сторон более четырех предел огнестойкости практически равен пределу огнестойкости плит, опертых по двум сторонам.

Статически неопределимые балки и балочные плиты при нагревании утрачивают несущую способность в результате разрушения опорных и пролетных сечений. Сечения в пролете разрушаются в результате снижения прочности нижней продольной арматуры, а опорные сечения - вследствие потери прочности бетона в нижней сжатой зоне, нагревающейся до высоких температур. Скорость прогрева этой зоны зависит от размеров поперечного сечения, поэтому огнестойкость статически неопределимых балочных плит зависит от их толщины, а балок - от ширины и высоты сечения. При больших размерах поперечного сечения предел огнестойкости рассматриваемых конструкций значительно выше, чем статически определимых конструкций (однопролетные свободно опертые балки и плиты), и в ряде случаев (у толстых балочных плит, у балок, имеющих сильную верхнюю опорную арматуру) практически не зависит от толщины защитного слоя у продольной нижней арматуры.

Колонны. Предел огнестойкости колонн зависит от схемы приложения нагрузки (центральное, внецентренное), размеров поперечного сечения, процента армирования, вида крупного заполнителя бетона и толщины защитного слоя у продольной арматуры.

Разрушение колонн при нагревании происходит в результате снижения прочности арматуры и бетона. Внецентренное приложение нагрузки уменьшает огнестойкость колонн. Если нагрузка приложена с большим эксцентриситетом, то огнестойкость колонны будет зависеть от толщины защитного слоя у растянутой арматуры, т.е. характер работы таких колонн при нагревании такой же, как и простых балок. Огнестойкость колонны с малым эксцентриситетом приближается к огнестойкости центрально-сжатых колонн. Колонны из бетона на гранитном щебне обладают меньшей огнестойкостью (на 20%), чем колонны на известковом щебне. Это объясняется тем, что гранит начинает разрушаться при температуре 573°С, а известняки начинают разрушаться при температуре начала их обжига 800° С.

Стены. При пожарах, как правило, стены обогреваются с одной стороны и поэтому прогибаются или в сторону пожара, или в обратном направлении. Стена из центрально-сжатой конструкции превращается во внецентренно сжатую с увеличивающимся во времени эксцентриситетом. В этих условиях огнестойкость несущих стен в значительной степени зависит от нагрузки и от их толщины. С увеличением нагрузки и уменьшением толщины стены ее предел огнестойкости уменьшается, и наоборот.

С увеличением этажности зданий нагрузка на стены возрастает, поэтому для обеспечения необходимой огнестойкости толщину несущих поперечных стен в жилых зданиях принимают равной (мм): в 5... 9-этажных зданиях - 120, 12-этажных - 140, 16-этажных - 160, в домах высотой более 16 этажей - 180 и более.

Однослойные, двухслойные и трехслойные самонесущие панели наружных стен подвергаются действию небольших нагрузок, поэтому огнестойкость этих стен обычно удовлетворяет противопожарным требованиям.

Несущая способность стен при действии высокой температуры определяется не только изменением прочностных характеристик бетона и стали, но главным образом деформативностью элемента в целом. Огнестойкость стен определяется, как правило, потерей несущей способности (разрушением) в нагретом состоянии; признак же обогрева "холодной" поверхности стены на 140° С не является характерным. Предел огнестойкости находится в зависимости от рабочей нагрузки (запаса прочности конструкции). Разрушение стен от одностороннего воздействия происходит по одной из трех схем:

  • 1) с необратимым развитием прогиба в сторону обогреваемой поверхности стены и ее разрушением в середине высоты по первому или второму случаю внецентренного сжатия (по нагретой арматуре или "холодному" бетону);
  • 2) с прогибом элемента в начале в сторону нагревания, а на конечной стадии в противоположном направлении; разрушение - в середине высоты по нагретому бетону или по "холодной" (растянутой) арматуре;
  • 3) с переменной направления прогиба, как и в схеме 1, но разрушение стены происходит в приопорных зонах по бетону "холодной" поверхности или по косым сечениям.

Первая схема разрушения характерна для гибких стен, вторая и третья - для стен с меньшей гибкостью и платформенно опертых. Если ограничить свободу поворота опорных сечений стены, как это имеет место при платформенном опирании, уменьшается ее деформативность и поэтому предел огнестойкости увеличивается. Так, платформенное опирание стен (на не смещаемые плоскости) увеличивало предел огнестойкости в среднем в два раза по сравнению с шарнирным опиранием независимо от схемы разрушения элемента.

Уменьшение процента армирования стен при шарнирном опирании снижает предел огнестойкости; при платформенном же опирании изменение в обычных пределах армирования стен на их огнестойкость практически не влияет. При нагревании стены одновременно с двух сторон (межкомнатные стены) у нее не возникает температурного прогиба, конструкция продолжает работать на центральное сжатие и поэтому предел огнестойкости не ниже, чем в случае одностороннего обогрева.

Основные принципы расчета огнестойкости железобетонных конструкций

Огнестойкость железобетонных конструкций утрачивается, как правило, в результате потери несущей способности (обрушения) за счет снижения прочности, теплового расширения и температурной ползучести арматуры и бетона при нагревании, а также вследствие прогрева не обращенной к огню поверхности на 140° С. По этим показателям - предел огнестойкости железобетонных конструкций может быть найден расчетным путем.

В общем случае расчет состоит из двух частей: теплотехнической и статической.

В теплотехнической части определяют температуру по сечению конструкции в процессе ее нагревания по стандартному температурному режиму. В статической части вычисляют несущую способность (прочность) нагретой конструкции. Затем строят график (рис. 3.7) снижения ее несущей способности во времени. По этому графику находят предел огнестойкости, т.е. время нагревания, по истечении которого несущая способность конструкции снизится до рабочей нагрузки, т.е. когда будет иметь место равенство: М рt (N рt) = М n (М n), где М рt (N рt) - несущая способность изгибаемой (сжатой или внецентренно сжатой) конструкции;

М n (М n), - изгибающий момент (продольное усилие) от нормативной или другой рабочей нагрузки.

Loading...Loading...