Кодировка диодов. Полупроводниковый диод, его виды и обозначения на схемах

Стабилитрон


Диод, сконструированный для работы в режиме электрического пробоя. Условное

графическое обозначение стабилитрона представлено на рис. 2.5,а.

Рис. 2.5. Графическое изображение полупроводниковых диодов:
а) стабилитрон; б) диод Шоттки; в) варикап; г) туннельный диод;
д) обращенный диод

В указанном режиме при значительном изменении тока стабилитрона напряжение изменяется незначительно, т. е. стабилитрон стабилизирует напряжение. Вольт-амперная характеристика кремниевого стабилитрона Д814Д представлена на рис. 2.6.

Рис. 2.6. Вольт-амперная характеристика

кремниевого стабилитрона Д814Д

В стабилитронах может иметь место и туннельный, и лавинный, и смешанный пробой в зависимости от удельного сопротивления базы.
В стабилитронах с низкоомной базой (низковольтных, до 5,7 В ) имеет место туннельный пробой, а в стабилитронах с высокоомной базой (высоковольтных) – лавинный пробой.

Основными является следующие параметры стабилитрона:

1. U ст – напряжение стабилизации (при заданном токе в режиме пробоя);

2. I ст.мин – минимально допустимый ток стабилизации;

3. I ст.макс максимально допустимый ток стабилизации;

4. r ст дифференциальное сопротивление стабилитрона (на участке пробоя),

Величины U ст , I ст.мин и I ст.макс принято указывать как положительные.

Для примера применения стабилитрона обратимся к схеме так называемого параметрического стабилизатора напряжения (рис. 2.7.). Легко заметить, что если напряжение u вх настолько велико, что стабилитрон находится в режиме пробоя, то изменения этого напряжения практически не вызывают изменения напряжения u вых (при изменении напряжения u вх изменяется только ток i , а также напряжение ).

Рис. 2.7. Схема параметрического стабилизатора напряжения

Стабилитрон является быстродействующим прибором и хорошо работает в импульсных схемах.

Стабистор

Это полупроводниковый диод, напряжение на котором при прямом включении (около 0,7 В ) мало зависит от тока (прямая ветвь на соответствующем участке почти вертикальная). Стабистор предназначен для стабилизации малых напряжений.

Диод Шоттки

В диоде Шоттки используется не p - n -переход, а выпрямляющий контакт металл-полупроводник. Условное графическое обозначение диода Шоттки представлено на рис. 2.5, б .

В обычных условиях прямой ток, образованный электронами зоны проводимости, переходящими из полупроводника в металл, имеет очень малую величину. Это является следствием недостатка электронов, энергия которых позволила бы им преодолеть данный барьер.

Для увеличения прямого тока необходимо «разогреть» электроны в полупроводнике, поднять их энергию. Такой разогрев может быть осуществлен с помощью электрического поля.

Если подключить источник внешнего напряжения плюсом к металлу, а минусом к полупроводнику n -типа, то потенциальный барьер понизится и через переход начнет протекать прямой ток. При противоположном подключении потенциальный барьер увеличивается и ток оказывается весьма малым.

Диоды Шоттки – очень быстродействующие приборы, они могут работать на частотах

до десятков гигагерц (1 ГГц =1·10 9 Гц ). У диода Шоттки может быть малый обратный ток и малое

прямое напряжение (при малых прямых токах) – около 0,5 В , что меньше, чем у кремниевых

Общая емкость диода в точке минимума характеристики составляет 0,8…1,9 пФ . Полезно отметить, что проверка диода тестером не допускается. Туннельные диоды могут работать на очень высоких частотах – более 1 ГГц .

Наличие участка с отрицательным дифференциальным сопротивлением на вольт-амперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов.

В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.

Обращенный диод

Это полупроводниковый диод, физические явления в котором подобны физическим явлениям в туннельном диоде, поэтому зачастую обращенный диод рассматривают как вариант туннельного диода. При этом участок с отрицательным дифференциальным сопротивлением на вольт-амперной характеристике обращенного диода отсутствует или очень слабо выражен.

Обратная ветвь вольт-амперной характеристики обращенного диода (отличающаяся очень малым падением напряжения) используется в качестве прямой ветви «обычного диода», а прямая ветвь – в качестве обратной ветви. Отсюда и название – обращенный диод.

Условное графическое обозначение обращенного диода представлено на рис. 2.5,д.

Рассмотрим для примера вольт-амперные характеристики германиевого обращенного диода 1И104А (рис. 2.9), предназначенного, кроме прочего, для работы в импульсных устройствах (постоянный прямой ток – не более 0,3 мА , постоянный обратный ток – не более 4 мА (при ), общая емкость в точке минимума вольт-амперной характеристики 1,2…1,5 пФ ).

Как видно из графика (рис. 2.9), обе ветви вольт-амперной характеристики практически симметричны (в зеркальном отражении) относительно начала координат. Участок отрицательного дифференциального сопротивления размещен на участке положительного напряжения между 0,1 и 0,3 В . При этом амплитуда тока на участке с отрицательным дифференциальным сопротивлением не превышает 0,05 мА .

Рис. 2.9. Вольт-амперная характеристика обращенного диода.

Под диодом обычно понимают электровакуумные или полупроводниковые приборы, которые пропускают переменный электрический ток только в одном направлении и имеют два контакта для включения в электрическую цепь. Односторонняя проводимость диода является его основным свойством. Это свойство и определяет назначение диода:

  • преобразование высокочастотных модулированных колебаний в токи звуковой частоты (детектирование);
  • выпрямление переменного тока в постоянный.

Под детектированием понимают еще кроме этого обнаружение сигнала.

Классификация диодов

По исходному полупроводниковому материалу диоды делят на четыре группы:

  • германиевые,
  • кремниевые,
  • из арсенида галлия,
  • из фосфида индия.

Германиевые диоды используются широко в транзисторных приемниках, так как имеют выше коэффициент передачи, чем кремниевые .

Это связано с их большей проводимостью при небольшом напряжении (около 0,1...0,2 В) сигнала высокой частоты на входе детектора и сравнительно малом сопротивлении нагрузки (5...30 кОм).

По конструктивно-технологическому признаку различают диоды:

  • точечные,
  • плоскостные.

По назначению полупроводниковые диоды делят на следующие основные группы:

  • выпрямительные,
  • универсальные,
  • импульсные,
  • варикапы,
  • стабилитроны (опорные диоды),
  • стабисторы,
  • туннельные диоды,
  • обращенные диоды,
  • лавинно-пролетные (ЛПД),
  • тиристоры,
  • фотодиоды, с
  • ветодиоды и оптроны.

Диоды характеризуются такими основными электрическими параметрами :

  • током, проходящим через диод в прямом направлении (прямой ток Іпр);
  • током, проходящим через диод в обратном направлении (обратный ток Іобр);
  • наибольшим допустимым выпрямленным ТОКОМ Івыпр.макс;
  • наибольшим допустимым прямым током Іпр.доп.;
  • прямым напряжением Unp;
  • обратным напряжением иобР;
  • наибольшим допустимым обратным напряжением иобр.макс
  • емкостью Сд между выводами диода;
  • габаритами и диапазоном рабочих температур.

Старая система обозначений

В соответствии с системой обозначений, разработанной до 1964 г., сокращенное обозначение диодов состояло из двух или трех элементов .

Первый элемент буквенный, Д — диод.

Второй элемент — номер, соответствующий типу диода: 1...100 — точечные германиевые, 101...200— точечные кремниевые, 201...300 — плоскостные кремниевые, 801...900 — стабилитроны, 901...950 — варикапы, 1001...1100 — выпрямительные столбы. Третий элемент — буква, указывающая разновидность прибора. Этот элемент может отсутствовать, если разновидностей диода нет.

В настоящее время существует система обозначений, соответствующая ГОСТ 10862-72. В новой, как и в старой системе, принято следующее разделение на группы по предельной (граничной) частоте усиления (передачи тока) на:

  • низкочастотные НЧ (до 3 МГц),
  • средней частоты СЧ (от 3 до 30 МГц),
  • высокочастотные ВЧ (свыше 30 МГц),
  • сверхвысокочастотные СВЧ;

По рассеиваемой мощности:

  • маломощные (до 0,3 Вт),
  • средней мощности (от 0,3 до 1,5 Вт),
  • большой (свыше 1,5 Вт) мощности.

Новая система обозначений

Новая система маркировки диодов более совершенна. Она состоит из четырех элементов.

Первый элемент (буква или цифра) указывает исходный полупроводниковый материал, из которого изготовлен диод: Г или 1 — германий * К или 2 — кремний , А или 3 — арсенид галлия , И или 4 — фосфид индия .

Второй элемент — буква, показывающая класс или группу диода.

Третий элемент — число, определяющее назначение или электрические свойства диода.

Четвертый элемент указывает порядковый номер технологической разработки диода и обозначается от А до Я.

Например:

  • диод КД202А расшифровывается: К — материал, кремний, Д — диод выпрямительный, 202 — назначение и номер разработки, А — разновидность;
  • 2C920 — кремниевый стабилитрон большой мощности разновидности типа А;
  • АИ301Б — арсенид галлиевый туннельный диод переключающей разновидности типа Б.

Иногда встречаются диоды, обозначенные по устаревшим системам: ДГ-Ц21, Д7А, Д226Б, Д18. Диоды Д7 отличаются от диодов ДГ-Ц цельнометаллической конструкцией корпуса, вследствие чего они надежнее работают во влажной атмосфере.

Германиевые диоды типа ДГ-Ц21...ДГ-Ц27 и близкие к ним по характеристикам диоды Д7А...Д7Ж обычно используют в выпрямителях для питания радиоаппаратуры от сети переменного тока.

В условное обозначение диода не всегда входят некоторые технические данные, поэтому их необходимо искать в справочниках по полупроводниковым приборам.

Одним из исключений является обозначение для некоторых диодов с буквами КС или цифрой вместо К (например, 2С) — кремниевые стабилитроны и стабисторы.

После этих обозначений стоит три цифры, если это первые цифры: 1 или 4, то взяв последние две цифры и разделив их на 10 получим напряжение стабилизации Uст.

Например:

  • КС107А — стабистор, Uст = 0,7 В,
  • 2С133А — стабилитрон, Uст = 3,3 В.

Если первая цифра 2 или 5, то последние две цифры показывают Uст, например:

  • КС 213Б — Uст = 13 В,
  • 2С 291А — Uст = 91 В.

Еесли цифра 6, то к последним двум цифрам нужно прибавить 100 В, например: КС 680А - Uст = 180 В.

Маркировка диодов

На корпусе диода обычно указывают материал полупроводника, из которого он изготовлен (буква или цифра), тип (буква), назначение или электрические свойства прибора (цифра), букву, соответствующую разновидности прибора, и дату изготовления, а также его условное обозначение.

Условное обозначение диода (анод и катод) указывает, как нужно подключать диод на платах устройств. Диод имеет два вывода, один из которых катод (минус), а другой — анод (плюс).

Условное графическое изображение на корпусе диода наносится в виде стрелки, указывающей прямое направление, если стрелки нет, то ставится знак «+».

На плоских выводах некоторых диодов (например, серии Д2) прямо выштамповано условное обозначение диода и его тип. При нанесении цветового кода, цветную метку, точку или полоску наносят ближе к аноду (рис. 1).

Для некоторых типов диодов используется цветная маркировка в виде точек и полосок (табл. 1). Диоды старых типов, в частности точечные, выпускались в стеклянном оформлении и маркировались буквой «Д» с добавлением цифры и буквы, обозначающих подтип прибора. Германиево-индиевые плоскостные диоды имели обозначение «Д7».

Рис. 1. Нанесение цветового кода на диоды.

Таблица 1 Цветовая маркировка полупроводниковых диодов.

Тип диода

Цвет кольца (к), точки (т)

со стороны катоде (в середине корпуса) со стороны анода

Оранжевая т

Голубая т.

Зеленая т.

Черная т.

Красная т.

Красная т.

Оранжевая т.

Желтая т.

Голубая т.

Зеленая и голубая т.

Две желтые т.

Две белые т.

Две зеленые т.

Красная т.

Желтая т.

Оранжевая т.

Зеленая т.

Желтая т.

Белая или желтая полоса на торце корпуса

Зеленая т.

Красная т.

Белая или желтая т.

Метка черного, зеленого или желтого цвета

Черная т.

Зеленая т.

* Цвет корпуса коричневый.

Тип диода

Цвет кольца (к), точки (т)

со стороны катода (в середине корпуса} со стороны анода

Оранжевое к.

Красное к.

Зеленое к.

Желтое к.

Голубое к.

КД243Ж

Фиолетовое к.

Оранжевое к.

Красное к.

Зеленое к.

Желтое к.

Голубое к.

КД510А Одно широкое и два узких зеленых к.
2Д510А Одно широкое и одно узкое зеленое к.
КД521А 1 шир + 2 узкие
КД521Б Синие полосы
КД521В Желтые полосы
КД522А Одно узкое черное к. Одно широкое
КД522Б Два узких черных к. Черное кольцо
КД522В Три узких черных к. + тип диода

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

В механике есть такие устройства, которые пропускают воздух или жидкость только в одном направлении. Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда Вы убирали шланчик насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная фиговинка - ниппель . Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение.

Электроника - эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток. Если провести аналогию: бачок с водой - это заряженный конденсатор , шланг - это провод, катушка индуктивности - это колесо с лопастями



которое невозможно сразу разогнать, а потом невозможно резко остановить.

Тогда что такое ниппель в электронике? А ниппелем мы будем называть радиоэлемент - диод . И в этой статье мы познакомимся с ним поближе.

Полупроводниковый диод представляет из себя элемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. Это своеобразный ниппель;-). Некоторые диоды выглядят почти также как и резисторы:





А некоторые выглядят чуточку по другому:

Есть также и SMD исполнение диодов:



Диод имеет два вывода , как и резистор, но у этих выводов, в отличие от резистора, есть определенные названия - анод и катод (а не плюс и минус, как говорят некоторые неграмотные электронщеги). Но как же нам определить, что есть что? Есть два способа:

1) на некоторых диодах катод обозначают полоской , отличающейся от цвета корпуса





2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Если подать на анод плюс, а на катод минус, то у нас диод "откроется" и электрический ток спокойно по нему потечет. А если же на анод подать минус, а на катод - плюс, то ток через диод не потечет. Своеобразный ниппель;-). На схемах простой диод обозначают вот таким образом:

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки;-).



Диоды оцениваются по двум основным параметрам: предельному обратному напряжению (Uобр) и максимальной силой тока (Imax ), проходящей через него. Предельное обратное напряжение представляет собой максимальное напряжение на выводах диода, приложенное к нему в закрытом состоянии, то есть на анод минус, а на катод - плюс.Максимальный рабочий ток представляет собой ток при прямом включении диода, который диод может выдержать, не выходя из строя.

Существуют также иные виды диодов:стабилитроны (диоды Зенера), светодиоды, тиристоры. Давайте подробнее рассмотрим каждый из них. ..

Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение . Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь - прямое направление, а вот в стабилитроне другая часть ветки ВАХ - обратное направление. Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры - Закон Джоуля-Ленца . Главный параметр стабилитрона - это напряжение стабилизации (Uст) . Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон - это минимальный и максимальный ток (I min, Imax) . Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:



На схемах обозначаются вот так:

Более подробно про стабилитроны можно прочитать в этой статье.

Светодиоды - особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет - это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже. Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (I max ) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменника и поставить туда постоянный резистор с таким же номиналом.





Лампы освещения из светодиодов потребляют копейки электроэнергии, но стоят до сих пор очень дорого.





Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.



На схемах светодиоды обозначаются так:

Как проверить светодиод можно узнать из этой статьи в конце.

Триодные тиристоры (тринисторы) представляют собой диоды, проводимость которых управляется с помощью третьего вывода - управляющего электрода (УЭ ). Основное применение тиристоров - это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тринисторы примерно как диоды или транзисторы. У тринисторов параметров столько, что не хватит статьи для их описания. Главный параметр - I ос,ср . - среднее значение тока, которое должно протекать через тринистор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тринистора - () , которое подается на управляющий электрод и при котором тринистор полностью открывается.



а вот так примерно выглядят силовые тринисторы, то есть тринисторы, которые работают с большой силой тока:

На схемах триодные тиристоры выглядят вот таким образом:

Существуют также разновидности тиристоров - динисторы и симисторы . У динисторов нету управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы - это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в основном в цепях с переменным током.

Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки . Диодные мосты - одна из разновидностей диодных сборок.



На схемах диодный мост обозначается вот так:

Существуют также и редко применяемые виды диодов: диоды Шоттки и туннельные диоды . Описание этих видов диодов выходит за рамки данной статьи.

Диод - незаменимый радиоэлектронный компонент. Эра полупроводниковой техники начиналась именно с него. На базе диода были построены все остальные полупроводниковые элементы, которые преобразили нашу жизнь.

Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка , а в качестве акцепторной примеси ионы Индия . Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.


Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:


В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.


Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.


Плоскостной и точечный диод

Какие бывают типы диодов?




А) На фото изображен рассмотренный нами выше диод.


Б) На этом рисунке изображён стабилитрон , (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.



Двуханодный стабилитрон - изображение на схеме

В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.


Г) , может использоваться в качестве усилительного элемента.


Д) , применяется в высокочастотных схемах для детектирования.


Е) , применяется как конденсатор переменной ёмкости.

Ж) , при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок.

З) , всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только.

Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое - это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме , стандартной для выпрямителей:


Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405 :


А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.


Светодиодная лампа фото

Светодиоды существуют в разных корпусах, в том числе и SMD.


Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный - Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.


Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:


Контроллер rgb

При использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил - AKV .

Обсудить статью ДИОДЫ

Классификация современных полупроводниковых диодов (ЦЦ) по их назначению, физическим свойствам, основным электрическим параметрам, конструктивно-технологическим признакам, исходному полупроводниковому материалу находит отражение в системе условных обозначений диодов.

Система обозначений ПД установлена отраслевым стандартом ОСТ 11336.919-81 , а силовых полупроводниковых приборов — ГОСТ 20859.1-89 . В основу системы обозначений положен буквенно-цифровой код.

Первый элемент (цифра или буква) обозначает исходный полупроводниковый материал, второй (буква) — подкласс приборов, третий (цифра) — основные функциональные возможности прибора, четвертый — число, обозначающее порядковый номер разработки, пятый элемент — буква, условно определяющая классификацию (разбраковку по параметрам) приборов, изготовленных по единой технологии.

Для обозначения исходного полупроводникового материала используются следующие символы:

- Г, или 1, — германий или его соединения;

- К, или 2, — кремний или его соединения;

- А, или 3, — соединения галлия;

- И, или 4, — соединения индия.

Для обозначения подклассов диодов используется одна из следующих букв:

- Д — диоды выпрямительные и импульсные;

- Ц — выпрямительные столбы и блоки;

В — варикапы;

- И — туннельные диоды;

- А — сверхвысокочастотные диоды;

- С — стабилитроны;

- Г — генераторы шума;

- Л — излучающие оптоэлектронные приборы;

О — оптопары.

Для обозначения наиболее характерных эксплуатационных признаков приборов (их функциональных возможностей) используются следующие цифры.

Диоды (подкласс Д):

1 — выпрямительные диоды с постоянным или средним значением прямого не более 0,3 А;

2 — выпрямительные диоды с постоянным или средним значением прямого более 0,3 А, но не свыше 10 А;

4 — импульсные диоды c временем восстановления обратного сопротивления более 500 нс;

5 — импульсные диоды c временем восстановления более 150 нс, но не свыше 500 нс;

6 — импульсные диоды c временем восстановления 30... 150 нс;

7 — импульсные диоды c временем восстановления 5...30 нс;

8 — импульсные диоды c временем восстановления 1...5 нс;

9 — импульсные диоды c эффективным временем жизни неосновных носителей заряда менее 1 нс.

Выпрямительные столбы и блоки (подкласс Ц):

1 — столбы с постоянным или средним значением прямого тока не более 0,3 А;

2 — столбы с постоянным или средним значением прямого тока 0,3...10 А;

3 — блоки с постоянным или средним значением тока не более 0,3 А;

4 — блоки с постоянным или средним значением прямого тока 0,3... 10 А.

Варикапы (подкласс В):

1 — подстроечные варикапы;

2 — умножительные варикапы.

Туннельные диоды (подкласс И):

— усилительные туннельные диоды;

— генераторные туннельные диоды;

— переключательные туннельные диоды;

— обращенные диоды.

Сверхвысокочастотные диоды (подкласс А):

— смесительные диоды;

— детекторные диоды;

— усилительные диоды;

— параметрические диоды;

— переключательные и ограничительные диоды;

— умножительные и настроечные диоды;

— генераторные диоды;

— импульсные диоды.

Стабилитроны (подкласс С):

1 — стабилитроны мощностью не более 0,3 Вт с номинальным стабилизации менее 10 В;

2 — стабилитроны мощностью не более 0,3 Вт с номинальным стабилизации 10...100 В;

3 — стабилитроны мощностью не более 0,3 Вт с номинальным напряжением стабилизации более 100 В,

4 — стабилитроны мощностью 0,3...5 Вт с номинальным напряжением стабилизации менее 10 В;

5 — стабилитроны мощностью 0,3...5 Вт с номинальным напряжением стабилизации 10...100 В;

6 — стабилитроны мощностью 0,3...5 Вт с номинальным напряжением стабилизации более 100 В;

7 — стабилитроны мощностью 5... 10 Вт с номинальным напряжением стабилизации менее 10 В;

8 — стабилитроны мощностью 5... 10 Вт с номинальным напряжением стабилизации 10... 100 В;

9 — стабилитроны мощностью 5... 10 Вт с номинальным напряжением стабилизации более 100 В.

Генераторы шума (подкласс Г):

— низкочастотные генераторы шума;

— высокочастотные генераторы шума.

Для обозначения порядкового номера разработки используется двухзначное число от 01 до 99. Если порядковый номер разработки превышает число 99, то в дальнейшем применяется трехзначное число от 101 до 999.

В качестве квалификационной литеры используются буквы русского алфавита (за исключением букв 3, О, Ч, Ы, Ш, Щ, Ю, Я, Ь, Ъ, Э).

В качестве дополнительных элементов обозначения применяются следующие символы:

- цифры 1...9 — для обозначения модификаций прибора, приводящих к изменению его конструкции или электрических параметров;

- буква С — для обозначения сборок — наборов в общем корпусе однотипных приборов, не соединенных электрически или соединенных одноименными выводами;

- цифры, написанные через дефис — для обозначения следующих модификаций конструктивного исполнения бескорпусных приборов:

1 — с гибкими выводами без кристаллодержателя;

2 — с гибкими выводами на кристаллодержателе (подложке);

3 — с жесткими выводами без кристаллодержателя (подложки);

4 — с жесткими выводами на кристаллодержателе (подложке);

5 — с контактными площадками без кристаллодержателя (подложки) и без выводов;

6 — с контактными площадками на кристаллодержателе без выводов, буква Р после последнего элемента обозначения — для приборов с парным подбором, буква Г — с подбором в четверки, буква К — с подбором в шестерки.

(КАРТИНКА)

Примеры обозначения приборов:

2Д204В — кремниевый выпрямительный диод с постоянным и средним значением тока 0,3...10 А, номер разработки 04, группа В.

КС620А — кремниевый стабилитрон мощностью 0,5...5 Вт, с номинальным напряжением стабилиза-ции более 100 В, номер разработки 20, группа А.

ЗИ309Ж — арсенид-галлиевый переключательный туннельный диод, номер разработки 09, группа Ж.

До введения в 1982 г. ОСТ 11336.919-81 применялась иная система условных обозначений. Она включала в себя два или три элемента (ГОСТ 5461 — 59 ).

Первый элемент — буква Д, характеризующая весь класс полупроводниковых диодов.

Второй элемент — число (номер), определяющее область применения:

1...100 — для точечных германиевых диодов;

101...200 — для точечных кремниевых диодов;

201...300 — для плоскостных кремниевых диодов;

301...400 — для плоскостных германиевых диодов;

401...500 — для смесительных СВЧ детекторов;

501...600 — для умножительных диодов;

601...700 — для видеодетекторов;

701...749 — для параметрических германиевых диодов;

750...800 — для параметрических кремниевых диодов.

Loading...Loading...