Технология изготовления пластин для печати. Курсовая работа Разработка технологии изготовления печатных форм плоской офсетной печати по схеме «компьютер печатная форма. Сравнение пластин по их характеристикам

Термочувствительные формные пластины используются для цифровой записи печатных форм инфракрасным лазерным излучением с длиной волны 830 нм. Тепловое воздействие этого диапазона длин волн стимулирует протекание в приемных слоях формных пластин термических процессов, в результате которых поглощенная энергия лазерного излучения повышает температуру слоя до значений, обеспечивающих протекание в слое тех или иных превращений. В зависимости от природы приемного слоя и длины волны излучения эти превращения сопровождаются термодеструкцией, термоструктурированием, изменением агрегатного состояния или инверсией смачиваемости.

В отличие от светового воздействия, для которого характерным является наличие при записи светорассеяния, при тепловом лазерном воздействии в результате точечного нагрева слоя наблюдается вторичный разогрев за счет струй раскаленных продуктов разложения в области, прилегающей к области лазерного воздействия. Влияние процесса распространения высокой температуры, благодаря инерционности термических процессов, может быть устранено путем, например, повышения скорости перемещения лазерного пятна (абберации при воздействие светового излучения не устранимы). Благодаря этому при использовании теплового воздействия можно достичь более высокого качества воспроизведения штриховых и растровых элементов - их изображения отличаются более высокой резкостью.

Технологические процессы изготовления печатных форм на термочувствительных формных пластинах различных типов отличаются друг от друга тем, что в случаях протекания в слоях термических деструкции или структурирования, обязательным является проведения обработки в растворах. Формные пластины, в приемных слоях которых под действием ИК - излучения наблюдается изменение агрегатного состояния (например, в результате возгонки) или инверсии смачиваемости, такой обработки не требуется. Эта отличительная особенность термочувствительных формных пластин двух последних типов делает возможным их использование в технологиях цифровой записи печатных форм по схеме «компьютер - печатная машина».

В результате реализации процесса записи и проведения «мокрой» обработки (если она нужна) формируются печатающие и пробельные элементы на формах. Если процесс записи сопровождается термодеструкцией или термоструктурированием приемного слоя, то после проявления в растворах печатающие элементы формируются на самом слое, пробельные - на гидрофильной подложке. На термочувствительных пластинах, на которых реализован процесс термодеструкции, пробельные элементы образуются после растворения слоя на участках воздействия излучения. При осуществлении процесса структурирования на участках воздействия излучения, наоборот, формируются печатающие элементы, при этом эти пластины после экспонирования могут подвергаться (при необходимости) дополнительному нагреву. В случае, если в структуру формной пластины входит покрытие, которое содержит термически активные компоненты, исключающие неполную сшивку экспонированных участков, то предварительного нагрева не требуется. Процесс возгонки, сопровождаемый изменением агрегатного состояния, используется для записи печатных форм.

Для оценки репродукционно-графических показателей печатных форм различных типов, изготовленных на термочувствительных формных пластинах, используется метод, основанный на использовании тест-объекта UGRA/FOGRA Digital Plate Control Wedge (рисунок 6):

Рисунок 6 - Тест-объект UGRA/FOGRA Digital Plate Control Wedge

1 - информационное поле; 2 - поля для контроля разрешения; 3 - поля для контроля фокусировки; 4 - поля геометрической диагностики; 5 - поля для визуального контроля экспозиции; 6 - поля для контроля воспроизведения градаций тонов изображения.

Фрагмент 2 представляет собой участки, состоящие из двух полукруглых элементов: в одном из элементов изображение, состоящее из позитивных линий, расходящихся лучами из центра, в два раза больше ширины номинальной развертки.

Фрагмент 4, увеличенное изображение которого можно увидеть на рисунке 7, состоит из шести колонок с элементами, размеры которых устанавливаются в пределах ширины номинальной строки развертки. Первые две колонки содержат линейчатый растр, причем ширина соответствует величине, однократной (в первой колонке) и двухкратной (во второй колонке) ширине строки развертки; штрихи расположены горизонтально и вертикально.


Рисунок 7 - Увеличенное изображение фрагмента 4

Фрагмент 5 (рисунок 8) состоит из полей в форме прямоугольников с проклеточной разбивкой 44 с шахматным наполнением, помещенных внутри полутоновых полей с S отн от 35% до 85% с шагом 5%. При оптимальных условиях воспроизведения и идеальной градационной передаче поля шахматного заполнения совпадают с 50% полем. Фрагмент служит также для контроля стабильности процесса записи печатных форм.

Рисунок 8 - Увеличенное изображение фрагмента 5

Фрагмент 6 (рисунок 9) состоит из растровых полей с Sотн от 0% до 5% (с шагом 1%), далее от 10% до 90% (с шагом 10%) и от 95% до 100% (вновь с шагом 1%).


Рисунок 9 - Увеличенное изображение фрагмента 6

После записи тест-объекта на приемный слой формной пластины и проведения соответствующей обработки измеряются следующие показатели: размер воспроизводимых штрихов элементов и интервал воспроизводимых градаций.

Разновидности цифровых технологий изготовления форм плоской офсетной печати. Последнее десятилетие отмечено бурным развитием цифровых технологий изготовления форм плоской офсетной печати и применением в этих технологиях разнообразных типов формного оборудования и формных пластин. Не существует научно обоснованных рекомендаций по их применению, поэтому нет и их общепринятой классификации. С целью более грамотного методического рассмотрения учебного материала приводится примерная классификация цифровых технологий офсетных формных процессов (рис. 10.1
) по следующим основным признакам:

    Тип источника излучения;

    Способ реализации технологии;

    Тип формного материала;

    Процессы, происходящие в приемных слоях.

В издательско-полиграфической практике и технической литературе в зависимости от способа реализации технологий принято различать три их варианта:

В цифровых технологиях СТР и CTPress в качестве источников излучения используются лазеры. Поэтому эти технологии называют лазерными . УФ-излучение лампы применяется только в технологии СТсР . Поэлементная запись информации по технологии СТР и СТсР проводится на автономном экспонирующем устройстве, а по технологии CTPress непосредственно в печатной машине. По существу, технология, осуществляемая по схеме CTPress , (известная также как технология DI , от англ. - Direct Imaging ) является разновидностью цифровой технологии СТР , при этом печатная форма может быть получена путем записи информации либо на формный материал (пластину или рулонный), либо сформирована на термографической гильзе, размещенной на формном цилиндре.

В отличие от формных технологий СТР и CTPress , которые используются как в ОСУ, так и в ОБУ, технология изготовления форм по схеме СТсР применяется в ОСУ.

Единой общепринятой классификации форм плоской офсетной печати, изготовленных по цифровым технологиям, не существует. Однако их можно классифицировать по тем же признакам, что и цифровые технологии (см. рис. 10.1 ). Кроме того, классификацию можно расширить за счет таких признаков, как тип подложки, строение форм, область использования (для ОСУ и ОБУ).

Процессы, происходящие в приемных слоях формных пластин в результате лазерного воздействия или экспонирования УФ-лампой, обеспечивают запись информации. После проведения обработки экспонированных пластин (если она необходима) печатающие и пробельные элементы могут быть образованы на участках слоя, которые либо подвергались действию излучения, либо, наоборот, его действию не подвергались. Структура формы зависит от типа и строения формной пластины, а также в некоторых случаях от способа экспонирования и обработки форм.

На рис. 10.2
упрощенно показаны структуры форм плоской офсетной печати с увлажнением пробельных элементов, полученные по наиболее широко используемым цифровым технологиям:

    Печатающим элементом может быть экспонированный светочувствительный или термочувствительный слой, слой осажденного серебра на неэкспонированных участках серебросодержащих пластин, а также неэкспонированный светочувствительный слой; пробельным элементом - гидрофильная пленка, находящаяся, например, на алюминиевой подложке (рис. 10.2, а );

    Печатающий элемент имеет двухслойное строение и состоит из неэкспонированного термочувствительного слоя, расположенного на поверхности гидрофобного слоя, пробельный элемент - гидрофильная пленка на поверхности алюминиевой подложки (рис. 10.2, б );

    Печатающим элементом является неэкспонированный термочувствительный слой, расположенный на поверхности гидрофильного слоя, а гидрофильный слой выполняет функцию пробельного элемента (рис. 10.2, в );

    Печатающим элементом может быть олеофильная (полимерная) подложка, которая обнажается под экспонированными участками термочувствительного слоя, пробельный элемент представляет собой неэкспонированный термочувствительный слой (рис. 10.2, г );

    Печатающим элементом является олеофильная (полимерная) подложка, пробельный элемент имеет двухслойное строение и состоит из гидрофильного слоя, расположенного на неэкспонированном термочувствительном слое (рис. 10.2, д );

    Печатающим элементом может быть, например, неэкспонированный термочувствительный слой, обладающий олеофильными свойствами; пробельный элемент - экспонированный термочувствительный слой, изменивший свойства на гидрофильные (рис. 10.2, e ).

Сравнение этих структур со структурами форм плоской офсетной печати, изготовленных по аналоговой технологии, показывает, что строение некоторых из них аналогично (см. рис. 10.2, а и 6.1, в ), другие отличаются строением печатающих и пробельных элементов.

Схемы изготовления форм плоской офсетной печати по цифровым технологиям. Цифровые технологии изготовления форм плоской офсетной печати с увлажнением пробельных элементов, наиболее широко применяемые в настоящее время, можно представить в виде общей схемы (рис. 10.3
). В зависимости от процессов, происходящих в приемных слоях под действием лазерного излучения, технологии изготовления форм можно представить в пяти вариантах. Стадии изготовления форм показаны на рис. 10.4-10.8, начиная с формной пластины и заканчивая печатной формой.

В первом варианте технологии (рис. 10.4
) экспонируется светочувствительная пластина с фотополимеризуемым слоем (рис. 10.4, б ). После нагревания пластины (рис. 10.4, в ) с нее удаляется защитный слой (рис. 10.4, г ) и проводится проявление (рис. 10.4, д ).

Во втором варианте (рис. 10.5
) экспонируется пластина с термоструктурируемым слоем (рис. 10.5, б ). После нагревания (рис. 10.5, б ) производится проявление (рис. 10.5, г ).

На отдельных типах формных пластин, используемых для этих двух вариантов технологий, требуется предварительное нагревание (перед проявлением), необходимое для усиления эффекта воздействия лазерного излучения (стадия в на рис. 10.4 и 10.5 ).

В третьем варианте технологии (рис. 10.6
) экспонируется светочувствительная серебросодержащая пластина (рис. 10.6, б ). После проявления (рис. 10.6, в ) проводится промывка (рис. 10.6, г ). Форма, полученная по такой технологии, отличается от формы, изготовленной по аналоговой технологии (см. рис. 6.2, е ).

Изготовление формы по четвертому варианту (рис. 10.7
) на термочувствительной пластине путем термодеструкции состоит из экспонирования (рис. 10.7, б ) и проявления (рис. 10.7, в ).

Пятый вариант (рис. 10.8
) технологии изготовления форм на термочувствительных пластинах путем изменения агрегатного состояния, включает проведение единственной стадии процесса - экспонирования (рис. 10.8, б ). Химической обработки в водных растворах (в практике называемой «мокрой обработкой») в этой технологии не требуется.

Заключительные операции изготовления печатных форм по различным вариантам технологий (см. рис. 10.3 ) могут отличаться.

Так, печатные формы, изготовленные по вариантам 1, 2, 4 , могут при необходимости подвергаться термообработке для повышения их тиражестойкости.

Печатные формы, изготавливаемые по варианту 3 , после промывки требуют проведения специальной обработки для формирования на поверхности подложки гидрофильной пленки и улучшения олеофильности печатающих элементов. Термообработке такие печатные формы не подвергаются.

Печатные формы, изготовленные на различных типах формных пластин по варианту 5 , после экспонирования требуют для полного удаления термочувствительного слоя с экспонированных участков или дополнительной обработки, например, промывки в воде, или отсоса газообразных продуктов реакции, или обработки увлажняющим раствором непосредственно в печатной машине. Термообработка таких печатных форм не предусматривается.

Процесс изготовления печатных форм может включать такие операции, как гуммирование и техническая корректура, если они предусмотрены технологией. Контроль форм является завершающей стадией процесса.

Аналоговые технологии поэлементной записи. В формных процессах плоской офсетной печати запись информации на формные пластины с помощью лазера стала применяться с середины 60-х гг. прошлого века, когда практически одновременно в ряде стран, в том числе и в СССР, были реализованы различные варианты технологий изготовления офсетных печатных форм. В этих технологиях в качестве оригинала использовался вещественный носитель информации, представлявший собой фотомонтаж полосы или газетный оттиск. Было создано несколько типов ЛУ для сканирования и переноса информации на формную пластину.

В середине 70-х гг. был разработан термографический способ изготовления форм плоской офсетной печати, основанный на переносе термочувствительного слоя с пленочного термографического материала на поверхность формной пластины с помощью лазерного излучения. В дальнейшем такой способ был, по-видимому, использован в DICO -технологии (см. § 10.3.9). Разработки технологий поэлементной записи проводились в направлении усовершенствования уже известных моделей лазерных экспонирующих устройств, отличающихся назначением, типом используемого лазера и производительностью. В результате было создано несколько десятков таких устройств.

Цифровые технологии. Эти технологии пришли на смену аналоговым. Появление реальных разработок в области цифровых технологий формных процессов объяснялось созданием многофункциональных устройств поэлементной обработки и записи информации. Первые варианты цифровых технологий для записи информации на формные пластины были ориентированы на использование фотовыводных устройств, в которых вместо фотопленки применялись формные пластины в основном на бумажной или полимерной подложках. По своим сенситометрическим свойствам приемные слои таких пластин были аналогичны галогенсеребряным слоям фотографических пленок. Развивались также первые технологии СТР , в которых изготовление форм осуществлялось на лазерных принтерах. Предназначенные для этих целей формные пластины часто на практике называют «полиэстеровыми».

Начало широкому распространению цифровых технологий в формных процессах плоской офсетной печати было положено в середине 90-х гг., когда на рынке были представлены промышленные модели специализированных ЭУ, способных осуществлять запись информации на формные пластины на металлической подложке. Необходимые для этой цели формные пластины с приемными слоями, чувствительными в видимой и ИК-областях спектра, к этому времени уже выпускались.

Параллельно с развитием технологий СТР стала развиваться цифровая технология CTPress , ориентированная на выпуск малотиражной и малоформатной печатной продукции. В 1991 г. была впервые реализована «искровая» технология изготовления печатных форм для ОБУ в печатной машине GTO-DI фирмы Heidelberg (Германия). «Искровая» технология базировалась на явлении поверхностной эрозии (от лат. erosio - разрушение поверхности) под воздействием электрических разрядов. В результате воздействия искрового разряда, создаваемого электродами при подаче на них высокого напряжения, участки антиадгезионного покрытия (см. § 7.2.2) формной пластины удалялись и обнажалась олеофильная поверхность, воспринимающая краску, - формировались печатающие элементы.

Недостаточно высокое качество получаемых при этом элементов изображения, которые отличались неровностью краев, не позволяло воспроизводить на таких формах высоколиниатурные изображения. В 1993 г. эта технология была усовершенствована: запись информации стала осуществляться с помощью ИК-лазерных диодов. Для такой записи были разработаны специальные формные материалы, которые изготавливались в двух модификациях: для ОСУ и ОБУ.

Наряду с указанными технологиями в тот же период времени стала развиваться технология СТсР , разработанная фирмой Basys Print GmbH (Германия). Достоинством этой технологии была возможность записи информации на монометаллические формные пластины, а сама технология записи в устройстве и его конструктивные особенности максимально приближались к традиционной технологии экспонирования на копировальном станке.

Периодом становления цифровых технологий по праву считается последнее пятилетие XX в., когда цифровые способы изготовления офсетных печатных форм стали повсеместно внедряться на полиграфических предприятиях всего мира.

Формные пластины для цифровых технологий. Прототипом для светочувствительных формных пластин послужили формные пластины, предназначенные для прямого фотографирования (см. § 6.1.2), но в отличие от последних они должны быть чувствительны к излучению применяемых в то время лазерных источников. Это были серебросодержащие пластины: с внутренним диффузионным переносом комплексов серебра и пластины гибридной структуры, а также пластины с фотополимеризуемым слоем. Пластины гибридной структуры в настоящее время находят ограниченное применение из-за многостадийности процесса получения на них печатной формы.

Первые упоминания о разработках термочувствительных пластин относятся к середине 80-х гг. прошлого века. Они использовались в первых ЭУ, оснащенных лазером на углекислом газе, для записи информации на которых был реализован процесс термического разрушения слоя. Разрабатывались они как для ОСУ, так и для ОБУ. В дальнейшем появились и другие типы термочувствительных пластин - преимущественно на алюминиевой подложке.

В зависимости от типа приемных слоев формных пластин процессы светового лазерного воздействия сопровождаются:

    Фотополимеризацией;

    Восстановлением серебра и внутренней диффузией комплексов серебра;

    Изменением фотопроводимости.

Восстановление серебра и внутренняя диффузия комплексов серебра. Процесс изготовления печатной формы на серебросодержащей пластине, сопровождаемый восстановлением серебра, образованием и диффузионным переносом комплексов серебра, основан на способности галогенида серебра восстанавливаться под действием излучения, в то время как образовавшиеся при проявлении серебряные комплексы (на неэкспонированных участках слоя) приобретают способность к диффузии (см. §§ 6.2.2 и 6.2.3). Отличия в строении формных пластин (см. рис. 6.2 и 10.6 ) не изменяют сущности протекающих процессов. Под действием лазерного излучения (см. рис. 10.6, б ) в галогенсеребряном эмульсионном слое 4 образуется скрытое изображение. В процессе химического проявления (см. рис. 10.6, в ) на этих участках происходит восстановление серебра из галогенида до металлического, при этом серебро образует устойчивые связи с желатиной эмульсионного слоя. Одновременно на участках, которые не подвергались действию излучения, галогенид серебра переводится (с помощью комплексообразователя) в растворимые в воде комплексы. Эти комплексы подвижны и способны к диффузии, поэтому они диффундируют к поверхности подложки через барьерный слой 3 в слой 2 , где в результате физического проявления на центрах проявления формируются печатающие элементы в виде осажденного серебра. В отличие от процесса, описанного в § 6.2.3 , пробельные элементы формируются на поверхности гидрофильной подложки после удаления с ее поверхности желатины и барьерного слоя, растворяемых в воде при промывке.

По сравнению с рассмотренным выше процессом получения печатающих элементов на формных пластинах с ФПС, на серебросодержащих пластинах эти элементы образуются не в результате действия излучения, а в процессе проявления и последующей промывки на участках, которые действию излучения не подвергались.

Изменение фотопроводимости , являющееся основой электрофотографического процесса изготовления печатной формы, рассмотрено в § 6.1.2 . В настоящее время такие формы не находят широкого применения из-за низкого качества получаемого на них изображения.

Тепловое воздействие, реализуемое на формных пластинах с термочувствительными слоями, приводит к образованию печатных форм в результате процессов:

    Термоструктурирования;

    Термодеструкции;

    Изменения агрегатного состояния;

    Инверсии смачиваемости.

Разновидности формных пластин. Многообразие формных пластин, применяемых в цифровых лазерных технологиях, требует их систематизации. Однако установившейся общепринятой классификации пока еще не существует. Наиболее широко используемые в настоящее время пластины можно классифицировать по следующим признакам (рис. 10.9 ):

Классифицируя формные пластины в зависимости от механизма получения изображения следует иметь в виду, что понятия «негативные» и «позитивные» пластины трактуются так же, как и в аналоговой технологии изготовления форм плоской офсетной печати: позитивные пластины - это те, на экспонированных участках которых формируются пробельные элементы, негативные - на экспонированных участках формируются печатающие элементы.

Кроме указанных на рис. 10.9 признаков, формные пластины могут быть также классифицированы по ряду частных признаков: геометрическим размерам пластин (форматам, толщинам подложек и приемных слоев), способам подготовки подложки, ее микрогеометрии, цвету окрашенного красителем слоя и др.

Основные характеристики формных пластин. К основным характеристикам формных пластин, используемых в цифровых лазерных технологиях изготовления форм, можно отнести следующие: энергетическую и спектральную чувствительность приемных слоев, интервал воспроизводимых градаций, тиражестойкость.

Энергетическая чувствительность. Определяется через количество энергии на единицу поверхности, необходимой для протекания процессов в приемных слоях формных пластин. Пластины с фотополимеризуемым слоем требуют 0,05-0,2 мДж/формула" src="http://hi-edu.ru/e-books/xbook609/files/sm2.gif" border="0" align="absmiddle" alt=", термочувствительные - 50-200 мДж/выделение">Спектральная чувствительность. Разные типы формных пластин могут обладать спектральной чувствительностью в различных диапазонах длин волн: УФ, видимой и ИК-областях спектра. Формные пластины, приемные слои которых чувствительны в УФ и видимом диапазонах длин волн, называются светочувствительными , формные пластины с приемными слоями, чувствительными в ИК-диапазоне длин волн, - термочувствительными .

Интервал воспроизводимых градаций. В практике работы с формными пластинами их репродукционно-графические свойства оцениваются интервалом градаций формула" src="http://hi-edu.ru/e-books/xbook609/files/204.gif" border="0" align="absmiddle" alt=" от 1 до 99% (при максимальной линиатуре растрирования равной 200-300 lpi ). Интервал воспроизводимых градаций на термочувствительных пластинах, не использующих такую обработку, меньше - от 2 до 98% (при 200 lpi )..gif" border="0" align="absmiddle" alt=", равными 2-98% при 200 lpi (или 1-99% при 175 lpi ), пример">lpi .

Теоретические предпосылки достижения тех или иных значений выделение"> Тиражестойкость. Печатные формы, изготовленные на светочувствительных и термочувствительных формных пластинах на металлической подложке, обладают тиражестойкостью от 100 до 400 тыс. отт. Она может быть дополнительно повышена термообработкой на некоторых типах форм (см. § 10.1.1) до 1 млн. отт. Тиражестойкость форм на полимерной подложке составляет 10-15 тыс. отт.

Применение различных типов пластин для конкретных условий. Выбирая тип формных пластин для изготовления различных изданий следует ориентироваться в первую очередь на характеристики пластин, которые позволяют достичь требуемого качества печатных форм. Важным является также длительность процесса изготовления форм. Она складывается из времени экспонирования, продолжительности и количества стадий обработки пластины после экспонирования. Отсутствие химической обработки при изготовлении форм на отдельных типах формных пластин обеспечивает также простоту и удобство их применения. Немаловажным является также стоимость пластин и их доступность.

Так, для газетной продукции, для которой определяющей является длительность процесса изготовления форм, целесообразно применение светочувствительных пластин, которые, обладая высокой чувствительностью, обеспечивают сокращение продолжительности экспонирования. Если определяющим параметром является качество изображения на форме, что необходимо для воспроизведения, например, журнальной продукции, то предпочтение следует отдать термочувствительным пластинам, которые обладают более высокими репродукционно-графическими показателями (по мнению ряда исследователей, такое же качество воспроизведения элементов изображения на форме может быть достигнуто при использовании и серебросодержащих пластин). Для оперативного изготовления форм для изданий, содержащих низколиниатурные изображения, могут быть использованы, например, полиэстеровые пластины.

Влияет на выбор типа формных пластин также тираж изданий, поскольку тиражестойкость не всех типов печатных форм может быть повышена путем термообработки (см. § 10.1.1).

Разновидности экспонирующих устройств. ЛЭУ для записи информации на офсетные формные пластины предназначены для экспонирования лазерным излучением приемного слоя формной пластины. Они могут быть выполнены либо в виде отдельного модуля, либо в виде поточной линии с устройствами для выполнения операций обработки пластин после экспонирования.

ЛЭУ можно классифицировать по ряду признаков: типу формных пластин, используемых для записи информации, типу лазерного источника, конструкции (схеме построения), назначению, степени автоматизации, формату (рис. 10.10 ). Они могут отличаться также по габаритам и дизайну, стоимости и другим параметрам.

Различные типы ЛЭУ могут быть предназначены для экспонирования на свето- и термочувствительные слои формных пластин. Для этой цели они оснащаются различными лазерами. Большое распространение в настоящее время для экспонирования светочувствительных пластин получили устройства с лазерными диодами, дающими излучение с пример">термальными . Применяемые в них лазеры (мощностью порядка 10 Вт) позволяют осуществлять запись информации на термочувствительные формные пластины.

Одним из основных признаков, по которым эти лазерные системы относят к тому или другому типу, является их схема построения , они построены по одной из трех основных схем (рис. 10.11
).

Основные технические характеристики устройств. Основные характеристики определяют технологические возможности ЛЭУ.

Как и в аналоговых технологиях, цифровые технологии записи информации на формные пластины требуют проведения контроля качества:

    Тестирование и калибровка устройства записи;

    Контроль самого процесса записи;

    Оценка показателей готовой печатной формы.

Важным является каждый этап контроля, а основополагающими считаются первые два этапа, поскольку настройка ЭУ и установка необходимой мощности лазерного источника неминуемо сказывается на всем последующем технологическом процессе, в конечном итоге, на качестве форм. Средством для контроля качества форм являются контрольные тест-объекты . Они представлены в цифровом виде и содержат ряд фрагментов различного целевого назначения для визуального и инструментального контроля:

    Информационный фрагмент с постоянной информацией о самом тест-объекте и переменной информацией с текущими данными о конкретных режимах записи;

    Фрагменты, содержащие объекты пиксельной графики для визуального контроля воспроизведения элементов изображения;

    Фрагменты, позволяющие оценить технологические возможности устройства записи и растрового процессора, а также репродукционно-графические показатели печатных форм.

Одним из первых тест-объектов, которые начали использоваться в цифровых технологиях, стал объект UGRA/FOGRA POST SCRIPT , который появился в 1990 г. В настоящее время находят применение несколько тест-объектов и среди них наиболее популярен UGRA/FOGRA DIGITAL PLATE CONTROL WEDGE . Известны также аналогичные контрольные тест-объекты фирм-производителей ЭУ, рекомендованные ими для использования при записи и адаптированные под определенный тип формных пластин.

Тест-объект UGRA/FOGRA DIGITAL PLATE CONTROL WEDGE (UGRA/FOGRA DIGITAL) , поставляемый в электронном виде в нескольких версиях, служит для настройки устройств на оптимальные режимы записи и последующего контроля этих режимов, а также оценки градационной и графической точности воспроизведения элементов изображения. Он состоит из четырех файлов, каждый из которых предназначен для контроля процесса изготовления печатных форм для желтой, голубой, пурпурной и черной красок. На рис. 10.12 показано его строение.

В тест-объекте шесть фрагментов:

Выделение">Тест-объект DIGI CONTROL WEDGE (рис. 10.13 ), разработанный фирмой Agfa , выполняет практически те же функции, что и рассмотренный выше. Он может быть представлен как в негативном, так и в позитивном исполнении и также скомплектован из ряда фрагментов, которые во многом аналогичны фрагментам UGRA/FOGRA DIGITAL , хотя технически решены по-другому. Тест-объект содержит:

Опред-е">Определение режимов экспонирования и качества форм с помощью тест-объектов. Используемые для контроля тест-объекты позволяют визуально оценить результат воздействия излучения. Для этого используется фрагмент 5 тест-объекта UGRA/FOGRA DIGITAL (см. рис. 10.12 ) или фрагмент 2 тест-объекта DIGI CONTROL WEDGE (рис. 10.14
).

Так, на полученном на форме изображении тест-объекта UGRA/FOGRA DIGITAL на фрагменте 5 должно сливаться с фоном поле с пример">DIGI CONTROL WEDGE сливаются с фоном все растровые поля с «шахматным» заполнением (рис. 10.14, в ).

Для некоторых типов позитивных пластин рекомендуется несколько завышать экспозицию чтобы избавиться от «тенения» на пробельных элементах, (рис. 10.14, г ).

На практике проводят контроль экспозиции по другим фрагментам рассмотренных тест-объектов: на UGRA/FOGRA DIGITAL по фрагменту 4 , содержащему поля «шахматного» заполнения (рис. 10.15
) или фрагменту 3 (рис. 10.16 ). На DIGI CONTROL WEDGE - по фрагменту 3 (рис. 10.17 ). Это возможно, так как эти элементы изображения особенно чувствительны к изменению мощности лазера, причем при правильно подобранной экспозиции (правило действительно только для позитивных пластин ) ширина штрихов должна соответствовать ширине просветов (рис. 10.17, б ). Для оценки их соответствия штриховые элементы на этом фрагменте расположены друг против друга. Контроль воспроизведения штриховых элементов позволяет также оценить работу устройства при выбранных режимах экспонирования, так как на изменение размеров этих элементов могут влиять и другие факторы, например, фокусировка луча, загрязнение оптики и т.д.

Цифровые тест-объекты используются не только для контроля экспозиции, но и позволяют оценить качество форм, в том числе, воспроизведение на них растровых изображений. Во всем интервале градаций выделение">6 тест-объекта UGRA/FOGRA DIGITAL , интервал градации - по фрагменту 4 тест-объекта DIGI CONTROL WEDGE . Воспроизведение штриховых элементов, в том числе, расположенных во взаимно перпендикулярных направлениях, - по фрагменту 3 рассмотренных тест-объектов.

При выборе режимов на негативных пластинах нужно учитывать, что экспонирование (или экспонирование и дополнительное нагревание) должно быть достаточным для полного структурирования слоя на будущих печатающих элементах. Поэтому правильный выбор экспозиции по контрольным элементам тест-объектов является важной составляющей процесса изготовления форм. Для оценки воздействия излучения на негативный слой формной пластины часто используется аналоговая тоновая шкала, например, фрагмент 1 UGRA-82 (см. рис. 6.7 ), который используется совместно с цифровым тест-объектом.

Первоначально перед выводом на пластину цифрового тест-объекта (например, DIGI CONTROL WEDGE ) необходимо выбрать экспозицию с помощью аналоговой полутоновой шкалы. С этой целью аналоговый тест-объект наклеивается на пластину и проводится экспонирование, после этого пластина проявляется. По номеру поля, под которым слой сохранился после проявления, оценивается экспозиция. В дальнейшем цифровой тест-объект выводят на пластину с той же самой экспозицией. При этой экспозиции одно из полей фрагмента 2 изображения тест-объекта DIGI CONTROL WEDGE на форме (так называемая, операционная точка для данного устройства и типа формной пластины) будет совпадать с фоном, определяя режимы записи.

В первых модификациях устройств UV-Setter , используемых для записи информации по цифровой технологии СТсР , для модуляции светового потока использовался многоканальный жидкокристаллический затвор. Жидкие кристаллы, обладая свойством менять свою ориентацию в пространстве под действием электрического тока, способны оказывать влияние на поляризацию излучения. Поэтому, если матрицу, состоящую из ячеек с жидкими кристаллами, расположить между поляризационными фильтрами, то можно получить модулятор излучения, который в зависимости от поступающего на него управляющего напряжения, будет либо пропускать, либо задерживать излучение. Таким образом, можно разделять световой поток на лучи, модулируя каждый из них в соответствии с записываемой информацией. Недостатком таких устройств является очень сильный нагрев поляризационных фильтров. Это требует ограничения мощности используемой в устройстве УФ-лампы и сказывается на интенсивности светового потока, и, в конечном итоге, на качестве печатных форм.

В более поздних моделях устройств UV-Setter , реализующих процесс DSI (от англ. - direct screen imaging - прямое растровое экспонирование), запись информации осуществляется по технологии DLP (от англ. - digital light processing - цифровая модуляция света). Основным элементом такого устройства записи (рис. 10.18 ) является микрозеркальное устройство DMD (от англ. - digital micromirror device - цифровое микрозеркальное устройство) - чип, на котором расположено большое число (более миллиона) отдельно управляемых микрозеркал, каждое из которых способно направлять отраженный от него луч либо в фокусирующую линзу (см. рис. 10.18 ), либо мимо нее.

При управлении поворотом микрозеркал элементы изображения проецируются на копировальный слой формной пластины. Работающие на отражение микрозеркала являются более эффективными по сравнению с ранее используемыми модуляторами. Однако количество микрозеркал в чипе недостаточно для экспонирования одновременно всей поверхности пластины, поэтому запись ведется последовательно, при старт-стопном выстаивании записывающей головки. Это сказывается на производительности устройства. Для ее повышения UV-Setter оснащается также двумя записывающими головками. Повышение производительности в последних моделях UV-Setter достигается использованием метода скроллинга, т.е. записи информации без выстаивания записывающей головки, а в процессе ее перемещения.

Устройства, работающие по такому оптико-механическому принципу с определенными ограничениями по разрешению, позволяют воспроизводить изображения размером 10-28 мкм (размер зависит от разрешения записи). Получаемое на печатных формах растровое изображение (рис. 10.19
) характеризуется высокой краевой резкостью.

Обработка пластин после их экспонирования включает комплекс операций, наличие и последовательность которых зависит не только от типа пластин, но и от их свойств. Режимы проведения процесса обработки и составы используемых обрабатывающих растворов определяются разработчиками. Обрабатываются экспонированные формные пластины на установках, которые обеспечивают возможность проведения всех необходимых стадий процесса. Для пластин различного типа (см. рис. 10.4-10.8) это могут быть пооперационные установки, аналогичные представленным на рис. 5.13
, или поточные линии, а также установки, доукомплектованные секциями для проведения дополнительных операций. Пластины с копировальным слоем, экспонированные по цифровой технологии СТсР , обрабатываются на том же оборудовании и при тех же режимах, как и в аналоговой технологии изготовления форм плоской офсетной печати (см. § 6.3.4).

Проявление. Если проявление предусмотрено технологией изготовления печатных форм, то оно должно осуществляться в установках при температуре 22-25°С при расходе соответствующего проявителя от 50 до 150 г/пример">on-line с экспонирующим устройством, и в этом случае экспонированные пластины автоматически загружаются в установку, а после обработки поступают на выводной стол или в накопитель (стэкер).

Термообработка для повышения тиражестойкости проводится при изготовлении печатных форм, полученных на пластинах с фотополимеризуемым слоем и термочувствительных (негативных и позитивных) пластинах (см. § 10.1.1). Осуществляется она либо в вертикальных термошкафах, в которые печатные формы загружаются вручную, либо горизонтальных конвейерных печах, которые часто подключены в линию с ЭУ и установкой для обработки.

Температура обработки различных типов печатных форм составляет 200-280°С, продолжительность ее проведения 6-8 мин в вертикальных термошкафах и 4-6 мин в конвейерных печах. Защитный раствор, наносимый перед термообработкой, может быть таким же как в аналоговой технологии, или используется специальный раствор, разработанный для конкретного типа формных пластин.

Завершающие операции. Процесс изготовления форм не заканчивается рассмотренными выше стадиями. Перед установкой формы в печатную машину в ней должны быть пробиты штифтовые отверстия (если они не были сделаны в формной пластине до экспонирования) и загнуты края, чтобы точно и быстро осуществить ее закрепление на формном цилиндре печатной машины. Иногда возникает необходимость в подрезке форм. Для этого используется комплект дополнительного оборудования: от ручных устройств для подрезки, перфорации и загиба до поточных линий, осуществляющих эти операции в автоматическом режиме. Кроме самих устройств и транспортирующих конвейеров для перемещения печатных форм между секциями такие линии могут оснащаться специальными средствами, контролирующими качество выполненных операций на полученных формах.

Наиболее простые ручные устройства для проведения этих операций обычно поставляются вместе с печатной машиной. Полностью автоматизированные устройства, подключенные в линию, позволяют получать готовые печатные формы, на которых с высокой точностью проводятся завершающие операции. Это существенно улучшает последующую приводку форм в печатной машине. Возможны различные варианты таких устройств, способных осуществлять только загиб форм или загиб и перфорацию одновременно. В первом случае уже пробитые формы попадают в устройство и позиционируются по штифтам, а затем производится их загиб. Производительность такого устройства - 240-300 форм в час. Положение формы в устройстве другого типа контролируется электронной системой, после чего загиб и перфорация производятся одновременно. Производительность устройства составляет 120 форм в час.

    Низкий контраст изображения на некоторых типах форм не позволяет точно распознать границу между печатающими и пробельными элементами;

    Различная величина светорассеяния из-за неровностей слоя и шероховатой поверхности подложки на формах, изготовленных на пластинах различных типов и различных производителей;

    Проблема учета цвета слоя при денситометрическом анализе;

    Необходимость исключения из расчета величины размытия, учитываемого формулой Шеберстова-Мюррея-Дэвиса, при использовании в денситометре встроенного программного обеспечения.

Затруднения, возникающие при оценке пример">Gretag Macbeth Spectro Eye , моделей X-Rite 528, 530, 938, Techkon SD 620 и других, поддерживающих стандарты на цветовые фильтры (европейский DIN 16536 или различные варианты американского ANSI ).

Для оценки растровых изображений на печатных формах, изготовленных по цифровым технологиям, целесообразно использовать дотметры . К ним относятся Centurfax CCDot 4 и Poly Dot (для контроля печатных форм на полимерных подложках), FAG Vipcam 116, Gretag Macbeth ICPlate, Techkon DMS 910, X-Rite СТР II , которые позволяют определять разрешение, измеряют линиатуру оцениваемой структуры и другие параметры на различных типах контролируемых пластин. Работа большинства таких приборов основана на проецировании части растрового изображения на ПЗС-матрицу, а выведенные цифровые данные о растровом изображении регистрируются с помощью мини-камеры. На основании полученной информации внутреннее программное обеспечение прибора позволяет отобразить растровую структуру, а затем вычислить опред-е">Возможные дефекты печатных форм и причины их возникновения. В отличие от аналоговых, цифровые технологии требуют проведения полного контроля на протяжении всего формного процесса, только тогда могут быть своевременно обнаружены и устранены причины возможных дефектов. Гарантировать стабильность показателей каждой печатной формы должна настройка ЭУ. Она проводится регулярно, а наиболее сложную ее часть - настройку при инсталляции осуществляют обычно специалисты, монтирующие и устанавливающие данное устройство. Регулярно проводимая настройка включает проверку действующей мощности источника излучения и его фокусировку, а также калибровку, контроль режимов обработки и их соответствие рекомендациям поставщика. Обязательной является и визуальная оценка чистоты поверхности формной пластины перед записью информации. Связано это с тем, что неполадки при записи и обработке могут привести к существенным материальным потерям.

Основными причинами, которые приводят к возникновению дефектов на формах являются:

    Неверная калибровка растрового процессора;

    Нарушение (сбой) установок в ЭУ, связанное с изменением внешних условий (температуры и влажности);

    Изменение интенсивности излучения при экспонировании из-за выработки ресурса лазера, загрязнения оптики в устройстве и т.д.;

    Изменение режимов в процессе проявления, связанное с перегревом проявителя, его заменой или истощением;

    Комбинация вышеуказанных факторов.

Дефектами, возникающими на печатных формах из-за указанных факторов являются:

    Искажения растровых и штриховых элементов изображения, вплоть до потери мелких деталей;

    Наличие остатков слоя (экспонированного и неэкспонированного) на пробельных элементах, приводящее к тенению и образованию рваного контура на краях печатающих элементов.

Устранение дефектов осуществляется варьированием действующей мощности лазера и изменением режимов проявления . Оценить изменение этих параметров можно по показаниям соответствующих фрагментов тест-объектов, например, фрагментов 1 и 2 шкалы DIGI CONTROL WEDGE . Так, если на печатных формах, изготовленных на негативных пластинах, на фрагменте 1 центральная область становится больше и одновременно сливается с фоном поле на фрагменте 2 , расположенное ближе к полю А, то причиной такого изменения является либо увеличение мощности, либо использование пластины с более высокой чувствительностью, либо истощение проявителя. Аналогичным образом влияние этих параметров можно оценивать по фрагменту 5 тест-объекта UGRA/FOGRA DIGITAL (см. рис. 10.12 ).

Влияние режимов проявления сказывается также на качестве воспроизведения краев элементов изображения. При высокой температуре, а также использовании агрессивного проявителя повышенной концентрации края элементов имеют рваный контур. Низкая температура проявления приводит к сохранению остатков слоя на пробельных элементах формы.

Разновидности печатных форм и их структура. Печатные формы для ОБУ могут быть классифицированы по таким признакам, как:

    Способ реализации технологии: различают формы, изготовленные по технологиям СТР и CTPress ;

    Тип подложки (полимерная или алюминиевая).

Упрощенные структуры печатных форм для ОБУ приведены на рис. 10.20
. Печатающие элементы на этих формах образуются на экспонированных участках: либо на олеофильной полимерной подложке (рис. 10.20, а ), либо на олеофильном слое 2 , расположенном на алюминиевой подложке (рис. 10.20, б ). Пробельные элементы формируются на антиадгезионном (силиконовом) слое (см. § 7.2.2), предварительно нанесенном на термочувствительный слой 3 на стадии изготовления формной пластины.

Схемы изготовления форм для ОБУ. Печатные формы для ОБУ изготавливаются в основном в одну стадию: проводится экспонирование термочувствительного слоя, дальнейшая обработка (проявление) в химических растворах не требуется, но необходимо удалить продукты термического разложения. Для их удаления ЭУ оснащены специальными вакуумными отсосами. По такой схеме изготавливаются формы для технологий по схеме СТР и СТРress .

Изготовление форм для ОБУ осуществляется также по другой схеме: после экспонирования проводится проявление, в результате которого с экспонированных участков удаляются антиадгезионный и термочувствительный слои. Такие печатные формы используются только в цифровой технологии СТР .

Формирование печатающих и пробельных элементов на формах для ОБУ. На формных пластинах для ОБУ на полимерной (рис. 10.21, а ) и алюминиевой (рис. 10.21, б ) подложках в результате термического разрушения поглощающего ИК-излучение термочувствительного слоя формируются печатающие элементы .

Происходит это таким образом: лазерное ИК-излучение проходит через антиадгезионный слой 3 , пропускающий излучение, и поглощается слоем 2 , чувствительным к этому излучению. Происходит изменение агрегатного состояния слоя 2 , например, путем возгонки, одновременно удаляется и антиадгезионный слой. Как предполагает ряд исследователей, его удаление связано с отщеплением метальных групп у атомов кремния в соединениях полисилоксана. В результате обнажается полимерная подложка 1 (см. рис. 10.21, а ), обладающая олеофильными свойствами, или олеофильный слой 4 (см. рис. 10.21, б ). Печатающие элементы на формных пластинах, термочувствительный слой которых содержит в своем составе абсорбент ИК-излучения, образуются также на олеофильном слое после экспонирования и проявления формных пластин другого типа.

Функции пробельных элементов на формах выполняет исходный антиадгезионный слой 3 (см. рис. 10.21 ). Этот слой может дополнительно упрочняться в процессе экспонирования в том варианте технологии, который ориентирован на использование формных пластин, содержащих термочувствительный слой металла, например, титан. Этот слой поглощает излучение и нагревается выше температуры плавления, а образовавшийся расплав способствует упрочнению антиадгезионного слоя.

CTPress используется для изготовления форм для ОБУ и ОСУ. Ее отличительной особенностью является возможность изготовления печатной формы (с последующим печатанием) в машине, которая оснащена ЭУ для записи информации. Главное преимущество технологии CTPress заключается в том, что она позволяет связать допечатные и печатные процессы, обеспечивая также сокращение времени изготовления многокрасочной печатной продукции. Время экспонирования пластин минимального формата (с шириной, равной 33 см, составляет в среднем 4 мин). Технология ориентирована на печатание тиражей, начиная с 300 отт., максимальный тираж определяется тиражестойкостью форм (см. § 10.3.8). Разрешение записи составляет от 1200 до 3556 dpi , при этом минимальный размер элементов изображения равен 10-11 мкм.

Схема записи печатной формы по технологии CTPress приведена на рис. 10.22
.

Процесс изготовления печатных форм осуществляется следующим образом: после обработки информация записывается в буферное запоминающее устройство (в печатной машине) и начинается подготовка к печати. Одновременно обновляется формный материал, который располагается на внешней поверхности формного цилиндра, и осуществляется запись информации: данные об изображении преобразуются в управляющие сигналы для лазерного ЭУ, лазерные лучи направляются к оптической системе, где они фокусируются. В дальнейшем производится запись одновременно всех цветоделенных печатных форм.

Конструктивно различные типы печатных машин, реализующих технологию CTPress , могут значительно отличаться. Существующие печатные машины имеют планетарное или секционное построение, некоторые модели сконструированы таким образом, что содержат только два формных цилиндра (на каждом из них осуществляется запись двух цветоделенных печатных форм). Применяются печатные машины чаще всего для четырехкрасочной печати, известны также модели, предназначенные для двухкрасочной двухсторонней печати.

Технические решения конструкций печатных секций и красочных аппаратов, размеры цилиндров, построение ЭУ (они могут быть стационарными, либо расположенными на специальной штанге, которая подводится к формному цилиндру перед записью) и устройств загрузки и выгрузки формного материала расширяют номенклатуру оборудования такого типа. Печатные машины имеют форматы АЗ+ и А2+, причем подача листовой бумаги возможна либо длинной, либо короткой сторонами. Печатание на таких машинах различных фирм-производителей осуществляется со скоростями от 7 до 15 тыс. отт. в час.

Формные материалы для технологии CTPress . Для технологии CTPress используются термочувствительные рулонные материалы на полимерной или формные пластины на алюминиевой подложках. Запись форм на эти материалы осуществляется способом теплового воздействия ИК-источников лазерного излучения (см. § 10.3.8). Формные материалы, с которыми производители такого оборудования связывают дальнейшие перспективы развития технологии CTPress , ориентированы на использование термочувствительных материалов нового поколения, не требующих никакой обработки после записи.

Термографическая запись на гильзах. Наряду с рассмотренными выше способами поэлементной записи офсетных печатных форм известна также цифровая технология DICO , (от англ. - Digital Change-over ) - она позволяет осуществлять многократную запись информации с помощью создания «временной» печатной формы. В данном случае не используются сменяемые формные пластины, а печатная форма формируется непосредственно в самой машине.печатающие элементы формы (рис. 10.23, б
). Функции пробельных элементов выполняет гидрофильный слой. Тиражестойкость такой формы составляет несколько десятков тысяч оттисков. После завершения процесса печатания изображение стирается очищающим раствором (рис. 10.23, в ) и вновь проводится запись информации.

Другие варианты записи. Весьма перспективным, по мнению ряда специалистов, является еще один вариант цифровой технологии, также позволяющий создать печатную форму непосредственно в печатной машине. Процесс формирования печатной формы по этой технологии состоит из нанесения (чаще всего напылением) на гидрофильную поверхность жидкого гидрофобного слоя (типа LiteSpeed , разработанного фирмой Agfa ).

Печатающие элементы образуются на экспонированных участках в результате лазерного воздействия: происходит нагревание слоя и его плавление, при этом химические связи между молекулами в слое не образуются. Неэкспонированные участки слоя удаляются увлажняющим раствором за несколько оборотов формного цилиндра в печатной машине и на обнаженной гидрофильной поверхности образуются пробельные элементы . Аналогичные варианты цифровых технологий, также реализуемых по схеме CTPress , предполагают формирование печатной формы на формном цилиндре струйным методом, например, с помощью чернил, которые в дальнейшем после печатания удаляются.

- 185.00 Кб

Московский Государственный Университет Печати им. И. Федорова

Кафедра «Технология допечатных процессов»

Контрольная работа

по дисциплине: «Технология формных процессов»

Москва, 2011

Цифровые технологии: CTP и CTcP плоской офсетной печати

CTP

Цифровые технологии изготовления офсетных печатных форм по схеме «Компьютер – печатная форма» осуществляется путем поэлементной записи изображения на формные пластины. Формирование изображения происходит в результате лазерного воздействия излучения.

Система CtP включает в себя три основные составляющие:

  • компьютеры, которые обрабатывают цифровые данные и управляют их потоками;
  • устройства записи на формные пластины (устройства экспонирования, формовыводные устройства);
  • формный материал (формные пластины с различными копировальными слоями, чувствительными к определённым длинам волн).

Существует много различных типов лазеров, используемых для изготовления печатных форм, они работают в различных частотных диапазонах и обладают различными показателями записи изображения. Все лазеры можно разделить на две основные категории: близкие к инфракрасному спектру термальные лазеры и лазеры видимого спектра излучения. Термальные лазеры экспонируют печатную пластину воздействием тепла, а пластины видимого спектра производят запись воздействием света. Необходимо использовать пластины, специально разработанные для того или иного типа лазеров, иначе правильной регистрации изображения не произойдет; в равной степени это относится и к проявочным процессорам.

Типы формных пластин

Основные типы формных пластин для CtP представлены бумажными, полиэфирными и металлическими пластинами.

Бумажные пластины

Это самые дешевые пластины для CtP. Их можно увидеть в маленьких типографиях коммерческой печати, в салонах быстрой печати, для работ с низким разрешением, «грязных», для которых приводка не имеет значения. Тиражеустойчивость, или тиражестойкость таких форм - низкая, обычно менее 10000 оттисков. Разрешающая способность чаще всего не превышает 133 lpi.

Полиэстровые формные пластины

Эти пластины имеют более высокую разрешающую способность, чем бумажные, в то же время они дешевле металлических. Их применяют для работ среднего уровня качества для печати в одну и две краски - а также для четырехкрасочных заказов, - в том случае если цветопередача, приводка и четкость изображения не имеют критического значения.

Формный материал представляет собой полиэстеровую пленку толщиной около 0,15 мм, одна из сторон которой имеет гидрофильные свойства. Эта сторона воспринимает тонер, наносимый лазерным принтером или ксероксом. Участки, не покрытые тонером, в процессе печати удерживают на себе пленку увлажняющего раствора и отталкивают краску, тогда как запечатанные участки, наоборот, ее воспринимают. Поскольку это светочувствительные пластины, их загрузка в экспонирующее устройство выполняется в комнате со специальным освещением, так называемой «темной» или «желтой» комнате. Такие формные пластины доступны в формате до 40 дюймов, или 1000 мм, и толщиной 0,15 и 0,3 мм. Пластины толщиной 0,3 мм являются уже третьим поколением этого типа материалов, имеющим толщину, аналогичную толщине формных пластин на металлической основе для четырех и восьмикрасочных машин.

При установке на формном цилиндре и превышении усилия натяжения может возникнуть растяжение полиэстровой печатной формы. Также растяжение формы часто наблюдается на полноформатных машинах. В настоящий момент возможно использование полиэстровых печатных форм при полноцветной печати. При двух и четырехкрасочной печати чаще наблюдается растяжение бумаги, чем формы. Тиражестойкость полиэстровых форм составляет 20–25 тыс. оттисков. Максимальная линиатура 150–175 lpi.

Металлические пластины

Металлические пластины имеют алюминиевую основу; они способны поддерживать самую резкую точку и самый высокий уровень приводки. Существует четыре основных разновидности металлических пластин: галогенидосеребряные пластины, фотополимерные пластины, термальные пластины, а также гибридные.

Серебросодержащие пластины

Пластины покрыты светочувствительной эмульсией, содержащей галогениды серебра. Состоят из трёх слоёв: барьерного, эмульсионного и противострессового, нанесённых на алюминиевую основу, подвергнутую предварительно электро-химическому зернению, анодированию и специальной обработке для катализации миграции серебра и обеспечению прочности его закрепления на пластине (рис. 8). Непосредственно на алюминиевой основе находятся также мельчайшие зародыши коллоидального серебра, в ходе последующей обработки восстанавливающиеся до металлического.

Строение серебросодержащей пластины

Все три водорастворимых слоя наносятся за один цикл. Данная технология нанесения многослойных покрытий очень близка к используемой в производстве фототехнических плёнок, и позволяет оптимизировать свойства пластины за счёт придания каждому слою специфических характеристик. Так, барьерный слой изготавливается из безжелатинового полимера, содержит частицы, способствующие наиболее полному удалению остатков всех слоёв внеэкспонированной области в ходе проявки пластин, что стабилизирует её печатные свойства. Кроме этого, слой содержит светопоглащающие компоненты для минимизации отражения от алюминиевой основы. Эмульсионный слой этих пластин состоит из светочувствительных галогенидов серебра, обеспечивающих высокую спектральную чувствительность материала и скорость экспонирования. Верхний антистрессовый слой служит для защиты эмульсионного слоя. Содержит также специальные полимерные соединения, облегчающие удаление прокладочной бумаги в автоматических системах, и светопоглащающие в определённой зоне спектра компоненты для оптимизации разрешения и условия работы с безопасным освещением.

Серебросодержащие пластины являются очень чувствительными к излучению и простыми в использовании, но недостатком их является низкая тиражестойкость до 350 000 оттисков и вдобавок, согласно закону об охране окружающей среды, требуют процедуры регенерации серебра после их использования.

3.3.2 Фотополимерные пластины

Это пластины с алюминиевой основой и полимерным покрытием которое придает им исключительную тиражеустойчивость - 200000 и более оттисков. Дополнительный обжиг печатных форм до печати тиража может увеличить срок службы печатной формы до 400 000 - 1 000 000 оттисков. Разрешающая способность печатной формы позволяет работать с линиатурой растра 200 lpi и «стохастикой» от 20 мкм, она выдерживает очень высокие скорости печати. Эти пластины предназначены для экспонирования в устройствах с лазером видимого света – зеленым или фиолетовым.

Строение фотополимерной пластины

Фотополимерная технология экспонирования предполагает негативный процесс, то есть лазерной засветке подвергаются будущие печатные элементы. Пластины являются промежуточными по чувствительности между термальными и серебросодержащими.

Термальные пластины

Состоят из трёх слоёв: алюминиевой подложки, печатного слоя и термочувствительного слоя, который имеет толщину менее 1 мкм, т.е. в 100 раз тоньше человеческого волоса.

Строение термальной пластины

Регистрация изображения на этих пластинах выполняется излучением невидимого спектра, близкого к инфракрасному. При поглощении ИК-энергии поверхность пластины нагревается и образует участки изображения, с которых удаляется защитный слой, - происходит процесс абляции, размывания; это «аблативная» технология. Высокая чувствительность верхнего слоя к ИК-излучению обеспечивает непревзойденную скорость формирования изображений, поскольку для экспонирования пластины лазером требуется малое время. Во время экспонирования, свойства верхнего слоя преобразуются под действием наведенного тепла, поскольку при лазерном облучении температура слоя поднимается до 400˚С, что позволяет назвать процесс термоформированием изображения.

Пластины делятся на три группы (поколения):

Термочувствительные пластины с предварительным нагревом;

Термочувствительные пластины, не требующие предварительного нагрева;

Термочувствительные пластины, не требующие дополнительной обработки после экспонирования.

Термальным пластинам свойственна высокая разрешающая способность, тиражеустойчивость обычно указывается производителями на уровне 200 000 и более оттисков. При дополнительном обжиге некоторые пластины способны выдержать миллионный тираж. Одни разновидности термальных пластин рассчитаны на трехсоставную проявку, другие подвергают предварительному обжигу, который заканчивает процесс записи изображения. Поскольку экспонирование производят при помощи лазеров вне видимого спектра, нет необходимости в затемнении или специальном защитном освещении. При обработке термочувствительных пластин второго поколения исключается трудоемкая стадия предварительного нагрева, требующая временных и энергетических затрат. Благодаря тому, что пластины имеют стойкие к разного рода химическим реагентам печатные элементы, их можно использовать с самыми разными вспомогательными материалами и красками, например, в печатных машинах со спиртовой системой увлажнения и при печати УФ-отверждаемыми красками. Пластины обеспечивают воспроизведение растровой точки в интервале 1 - 99% при линиатуре до 200 lpi, что позволяет использовать их для печати работ, требующих самого высокого качества.

Но, несмотря на эти преимущества, слабой стороной этой технологии является более высокая совокупная стоимость термальных пластин и высокая стоимость термальных экспонирующих устройств по сравнению со светочувствительными системами. Такие пластины требуют оснащения устройства СtР вакуумной установкой для удаления отходов.

CTcP

Цифровые технологии изготовления офсетных печатных форм реализуются не только путем записи изображения на формовыводных устройствах по технологии СТР, но и с помощью УФ-излучения в устройстве типа UV-Setter фирмы Basys Print. Эта технология, известная как «компьютер - традиционная печатная форма» - СТсР, осуществляется путем записи изображения на формную пластину с копировальным слоем.

Способ записи изображения в этой технологии основан на цифровой модуляции излучения с помощью микрозеркального устройства - чипа, каждое зеркало которого управляется таким образом, что во включенном положении единичное микрозеркало направляет поступающий на него световой сигнал через фокусирующую линзу на формную пластину; в выключенном состоянии отраженный от микрозеркала свет на пластину не попадает и, следовательно, не регистрируется на ней.

Таким образом происходит запись изображения на формную пластину, при этом каждое микрозеркало (а их порядка 1,3 млн штук) формирует субэлемент изображения квадратной формы с резкими краями (рис. 1).

Поскольку в устройстве UV-Setter используются в настоящее время источники, дающие излучение в УФ-диапазоне спектра, то практическое применение находят формные пластины с копировальным слоем как с позитивным, так и негативным. При этом использование формных пластин с негативным копировальным слоем позволяет повысить производительность за счет того, что для записи на них (с учетом принципа получения деталей изображения при экспонировании) требуется меньшее время.

Рис. 1. Увеличенный фрагмент структуры поверхности печатной формы I

И конфигурация полученных на ней растровых точек II

Пока на рынке присутствует только одна группа серийно выпускаемых CTcP-устройств - это формоизготовители UV-Setter фирмы basysPrint (Германия). Компания basysPrint была основана в 1995 году немецким инженером Фридрихом Люллау с целью коммерческой реализации разработанной им технологии DSI (Digital Screen Imaging - цифровое растровое экспонирование).

Описание работы

Цифровые технологии изготовления офсетных печатных форм по схеме «Компьютер – печатная форма» осуществляется путем поэлементной записи изображения на формные пластины. Формирование изображения происходит в результате лазерного воздействия излучения.

Введение

1. Основные виды формных пластин для офсетной печати

1.1 Способ офсетной печати

1.2 Способы получения печатных форм и виды формных пластин

2. Аналоговые формные материалы

2.1. Формные материалы для изготовления печатных форм контактным копированием

2.1.1 Биметаллические пластины

2.1.2 Монометаллические пластины

2.2 Электростатические формные материалы

3. Цифровые формные материалы

3.1 Бумажные пластины

3.2 Полиэстровые формные пластины

3.3 Металлические пластины

3.3.1 Серебросодержащие пластины

3.3.2 Фотополимерные пластины

3.3.3 Термальные пластины

3.3.4 Беспроцессные формные пластины

3.3.5 Гибридные пластины

4. Формные пластины для офсета без увлажнения

4.1 Пластины для «сухого» офсета

4.2 Плюсы и минусы «безводных» пластин

Заключение

Список литературы

Приложения

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Приложение 5

Введение

На сегодняшний день, несмотря на разнообразие способов получения печатной продукции, способ плоской офсетной печати остается доминирующим. Это связано, прежде всего, с высоким качеством получения отпечатков за счет возможности воспроизведения изображения с высоким разрешением и идентичностью качества любых участков изображения; со сравнительной простотой получения печатных форм, позволяющей автоматизировать процесс их изготовления; с легкостью корректуры, с возможностью получения оттисков больших размеров; с небольшой массой печатных форм; со сравнительно недорогой стоимостью форм. Согласно прогнозам Исследовательской информационной ассоциации полиграфистов Великобритании PIRA, 2010 год будет годом офсетной печати, и рыночная доля ее составит 40 процентов, что превысит все остальные виды печатных процессов .

В области допечатных процессов офсетного производства продолжается рационализация, целями которой являются сокращение времени производства и сращивание с печатными процессами. Репродукционные предприятия все чаще подготавливают цифровые данные, которые передаются на печатную форму или непосредственно в печать. Технологии прямого экспонирования на формные материалы активно развиваются, при этом форматы обработки информации увеличиваются.

Важнейшим элементом технологии офсетной печати является печатная форма, которая в последние годы претерпела существенные изменения. Идея записи информации на формный материал не посредством копирования, а путем построчной записи сначала с материального оригинала, а затем из цифровых массивов данных была известна уже лет тридцать назад, но ее интенсивная техническая реализация началась сравнительно недавно. И хотя сразу на этот процесс перейти невозможно, постепенно такой переход происходит. Однако есть и предприятия (причем не только в нашей стране), которые работают еще по старинке, а к современным материалам относятся с подозрением, несмотря на то, что эти пластины изготавливаются с высочайшим заданным качеством и имеют все гарантии производителя. Поэтому наряду с широким ассортиментом офсетных формных пластин для лазерной записи существуют и обычные копировальные пластины, которые производителями во многих случаях рекомендуются одновременно и для записи лазерным сканированием или лазерным диодом .

В данной работе рассмотрены основные разновидности формных пластин для традиционной технологии изготовления офсетных печатных форм, которая предусматривает копирование изображения с фотоформы на формную пластину в копировальной раме и последующее проявление офсетной копии вручную или с использованием процессора, а затем для технологии «компьютер–печатная форма» (Комьютер-ту-плейт (Computer-to-Plate)), назовем ее сокращенно CtP. Последняя позволяет экспонировать изображение непосредственно на формную пластину без использования фотоформ. Основное внимание будет уделено CtP-пластинам.

Основные термины полиграфического производства, упомянутые в работе, приведены в приложении (см. приложение 1).

1.1 Способ офсетной печати

Способ офсетной печати существует более ста лет и на сегодняшний день является совершенным технологическим процессом, дающим самое высокое качество печатной продукции среди всех промышленных способов печати.

Офсетная печать (от англ. offset) – это разновидность плоской печати, при которой краска с печатной формы передается на резиновую поверхность главного офсетного цилиндра, а с нее переносится на бумагу (или др. материал); это позволяет печатать тонкими слоями красок на шероховатых бумагах . Печать производится со специально подготовленных офсетных форм, которые заряжаются в печатную машину. В настоящее время применяются два способа плоской печати: офсетная с увлажнением и офсетная без увлажнения («сухой офсет»).

В офсетной печати с увлажнением печатающие и пробельные элементы печатной формы лежат в одной плоскости. Печатающие элементы обладают гидрофобными свойствами, т.е. способностью отталкивания воды, и одновременно олеофильными свойствами, позволяющими им воспринимать краску. В то же время пробельные (непечатающие) элементы печатной формы, наоборот, имеют гидрофильные и олеофобные свойства, благодаря чему они воспринимают воду и отталкивают краску. Печатная форма, используемая в офсетной печати, представляет собой пластину, готовую для печати, которая устанавливается на печатную машину. Машина для офсетной печати имеет группы валиков и цилиндров. Одна группа валиков и цилиндров обеспечивает нанесение на печатную форму увлажняющего раствора на водной основе, а другая - нанесение краски на масляной основе (рис. 1). Печатная форма, размещенная на поверхности цилиндра, контактирует с системами валиков.

Рис. 1. Главные составные части офсетной печатной секции

Вода или увлажняющий раствор воспринимается только пробельными элементами формы, а краска на масляной основе - печатающими. Затем красочное изображение переносится на промежуточный цилиндр (называемый офсетным цилиндром). Перенос изображения с офсетного цилиндра на бумагу обеспечивается за счет создания определенного давления между печатным и офсетным цилиндрами. Таким образом, плоская офсетная печать представляет собой печатный процесс, основанный исключительно на том принципе, что вода и печатная краска в силу своих физических и химических различий отталкивают друг друга .

Офсет без увлажнения использует тот же принцип, но с другими комбинациями поверхностей и материалов. Так, офсетная печатная форма без увлажнения имеет пробельные участки, которые сильно отталкивают краску благодаря силиконовому слою. Краска воспринимается лишь на тех участках печатной формы, с которых он удален .

Сегодня для изготовления печатных форм плоской офсетной печати используется большое количество различных формных материалов, которые отличаются друг от друга по способу изготовления, качеству и стоимости. Они могут быть получены двумя способами – это форматная и поэлементная запись. Форматная запись – это запись изображения по всей площади одновременно (фотографирование, копирование), так называемая традиционная технология. Печатные формы можно изготавливать копированием с фотоформ - диапозитивов - позитивным способом копирования или негативов - негативным способом копирования . При этом применяются формные пластины с позитивным либо негативным копировальным слоем.

При поэлементной записи площадь изображения разбивается на некоторые дискретные элементы, которые записываются постепенно элемент за элементом (запись при помощи лазерного излучения). Последний способ получения печатных форм называют «цифровым», он подразумевает использование лазерного воздействия. Печатные формы изготавливают в системах прямого получения печатных форм или напрямую в печатной машине (Computer-to-Plate, Компьютер-ту-Пресс (Computer-to-Press)).

Итак, CtP - управляемый компьютером процесс изготовления печатной формы методом прямой записи изображения на формный материал. При этом полностью отсутствуют какие-либо промежуточные вещественные полуфабрикаты: фотоформы, репродуцируемые оригинал-макеты, монтажи и т.д.

Каждая печатная форма, записанная по цифровым данным, является первой оригинальной копией, что обеспечивает следующие показатели:

Большая резкость точек;

Более точная приводка;

Более точное воспроизведение диапазона градаций исходного изображения;

Меньшее растискивание растровой точки при печати;

Сокращение времени на подготовительные и приладочные работы на печатной машине.

Основными проблемами применения технологии CtP являются проблемы с начальными инвестициями, повышенные требования к квалификации оператора (в частности, переподготовка), организационные проблемы (например, необходимость выводить готовые спуски) .

Итак, в зависимости от способа изготовления печатных форм различают аналоговые и цифровые пластины.

Существуют также и такие пластины, как Вочэлэсс (Waterless - сухой офсет), которые будут упоминаться в моей работе.

Рассмотрим более детально основные разновидности формных пластин для офсетной печати и их технические характеристики.

Технологии изготовления форм офсетной печати

Юрий Самарин, докт. техн. наук, проф. МГУП им. Ивана Федорова

В современных допечатных процессах для изготовления офсетных печатных форм в основном используются три технологии: «компьютер — фотоформа» (Computer-to-Film); «компьютер — печатная форма» (Computer-to-Plate) и «компьютер — печатная машина» (Computer-to-Press).

Процесс изготовления офсетных печатных форм с использованием технологии «компьютер — фотоформа» (рис. 1) включает следующие операции:

  • пробивка отверстий для штифтовой приводки на фотоформе и формной пластине с помощью перфоратора;
  • форматная запись изображения на формную пластину путем экспонирования фотоформы на контактно-копировальной установке;
  • обработка (проявление, промывка, нанесение защитного покрытия, сушка) экспонированных формных копий в процессоре или поточной линии для обработки офсетных формных пластин;
  • контроль качества и техническая корректура (при необходимости) печатных форм на столе или конвейере для просмотра форм и их корректировки;
  • дополнительная обработка (промывка, нанесение защитного слоя, сушка) форм в процессоре;
  • термообработка форм в печи для обжига (при необходимости повышения тиражестойкости).

Рис. 1. Схема процесса изготовления офсетных форм по технологии «компьютер — фотоформа»

Качество фотоформ должно отвечать требованиям технологического процесса изготовления печатных форм. Эти требования определяются способом печати, применяемой технологией и материалами. Например, комплект цветоделенных растровых диапозитивных фотоформ для офсетной листовой печати на многокрасочной машине (печать по сырому) на наиболее распространенной сегодня мелованной бумаге должен обладать следующими характеристиками:

  • отсутствие царапин, заломов, посторонних включений и других механических повреждений;
  • минимальная оптическая плотность (оптическая плотность основы пленки с учетом плотности вуали) — не более 0,1 D;
  • максимальная оптическая плотность для фотоформ, изготовленных лазерным экспонированием (с учетом плотности вуали), — не менее 3,6 D;
  • плотность ядра растровой точки не менее 2,5 D;
  • минимальная величина относительной площади растровых элементов — не более 3%;
  • наличие на фотоформе названий красок;
  • углы наклона растровой структуры соответствуют заданным величинам для каждой краски;
  • линиатура растровой структуры соответствует заданной;
  • несовмещение изображений на фотоформах одного комплекта по крестам — не выше 0,02% от длины диагонали. Это значение учитывает допуски на повторяемость при лазерном экспонировании и величину деформации пленки;
  • наличие на фотоформе контрольных меток и шкал.

Фотоформа полноформатного печатного листа может быть получена как непосредственно при выводе изображения в фотовыводном устройстве соответствующего формата, так и методом монтажа из фотоформ отдельных полос. В этом случае монтаж осуществляется вручную на монтажном столе.

Формы офсетной плоской печати на пробельных и печатающих элементах обладают различными физико-химическими свойствами по отношению к печатной краске и увлажняющему средству. Пробельные элементы образуют гидрофильные поверхности, воспринимающие влагу, а печатающие элементы — гидрофобные участки, воспринимающие печатную краску. Гидрофильные и гидрофобные участки создаются в процессе обработки формного материала.

Формы офсетной плоской печати могут быть разделены на две основные группы: монометаллические и полиметаллические — в зависимости от того, что применяется для создания пробельных и печатающих элементов — один металл (монометалл) или несколько (полиметалл). В настоящее время полиметаллические формы практически не используются. При всех современных способах изготовления монометаллических форм гидрофобные печатающие элементы создаются на пленках копировального слоя, прочно сцепленных с развитой поверхностью металла, а пробельные — на адсорбционных гидрофильных пленках, образованных на поверхности металла-основы.

Рис. 2. Способы контактного копирования: а — позитивный; б — негативный. 1 — подложка; 2 — копировальный слой; 3 — фотоформа диапозитивная; 4 — фотоформа негативная

Офсетные печатные формы изготавливают негативным или позитивным способом контактного копирования (рис. 2). При негативном способе на светочувствительный копировальный слой копируют негативы, и в этом случае задубленный копировальный слой служит основанием для печатающих элементов. При позитивном способе на светочувствительный слой копируют с диапозитива, и тогда экспонированные участки растворяются при обработке копии.

Позитивный способ копирования обеспечивает большую точность передачи элементов изображения и устойчивость печатающих элементов в процессе печатания.

Для изготовления офсетных форм применяются централизованно выпускаемые предварительно очувствленные офсетные позитивные или негативные пластины.

Предварительно очувствленные позитивные формные пластины представляют собой многослойную структуру (рис. 3). Они производятся на основе особо чистого алюминиевого проката и являются результатом сложного и продолжительного процесса, гарантирующего высокое качество продукта. Эти пластины предназначены для изготовления высококачественных офсетных форм для листовых и рулонных машин способом позитивного копирования.

Рис. 3. Структура позитивной офсетной пластины: 1 — алюминиевая основа; 2 — электрохимическое зернение; 3 — оксидная пленка; 4 — гидрофильный подслой; 5 — светочувствительный копировальный слой; 6 — микропигментированный слой

После электрохимической обработки, оксидирования и анодизации алюминиевая основа приобретает физико-химические характеристики, обеспечивающие высокую разрешающую способность и тиражестойкость, стабильность гидрофильных свойств пробельных элементов на офсетной печатной форме, равномерное распределение красочного слоя и увлажняющего раствора по всей площади пластины.

После экспонирования обеспечивается хорошее представление цвета копировального слоя, позволяющее контролировать качество копирования до проявления. Печатающие элементы, образованные копировальным слоем, имеют хороший контраст по сравнению с пробельными участками, что позволяет использовать пластины для сканирования в системах автоматического контроля и управления офсетной печатью. В процессе печатания благодаря развитой капиллярной структуре анодированного слоя быстро устанавливается оптимальный баланс «краска — вода», который стабильно поддерживается в процессе печатания тиража. Копировальный печатающий слой характеризуется высокой устойчивостью к действию спиртовых увлажняющих растворов и смывочных материалов. Оксидный слой упрочняет пробельные участки и увеличивает тиражестойкость печатных форм, защищая их поверхности от царапин и истирания. Высококачественная алюминиевая основа обеспечивает плотное облегание формного цилиндра и прочность формы на излом.

Высокая светочувствительность и фотоширота копировального слоя позволяют сократить время экспонирования, обеспечить точное воспроизведение и упростить процесс проявления.

Микропигментирование (вакуумное покрытие) копировального слоя способствует плотному контакту с фотоформой при экспонировании и быстрому созданию вакуума.

Основные технические показатели позитивных (аналоговых) формных пластин имеют примерно следующие значения:

  • шероховатость — 0,4-0,8 мкм;
  • толщина анодированного слоя — 0,8-1,7 мкм;
  • толщина копировального слоя — 1,9-2,3 мкм;
  • спектральная чувствительность — 320-450 нм;
  • энергочувствительность — 180-240 мДж/см2;
  • время экспонирования (при освещенности 10 000 лк) — 2-3 мин;
  • минимальный размер воспроизводимых штрихов — 6-8 мкм;
  • линиатура растрового изображения — 60 лин/см (150 lpi);
  • градационная передача растровых элементов — в светах 1-2%, в тенях 98-99%;
  • тиражестойкость — до 150 тыс. оттисков без термообработки и до 1 млн оттисков с термообработкой;
  • цвет копировального слоя — синий, зеленый, темно-голубой;
  • толщина пластин — 0,15; 0,2; 0,3; 0,4 мм.

Печатные формы должны иметь на передней кромке штифтовые отверстия разной конфигурации (круглые, овальные, прямоугольные). Штифтовые (приводочные) отверстия облегчают совмещение изображений, получаемых при печатании с готовых печатных форм.

Фотоформы и формные пластины перед копированием приводочными отверстиями надеваются на штифты специальной линейки, поставляемой вместе с перфоратором. Конфигурация, количество отверстий и расстояние между ними (рис. 4) зависят от формата печати и принятого стандарта приводки, который должен соответствовать штифтовой линейке печатной машины. Готовая форма надевается в печатной машине на соответствующие штифты.

Рис. 4. Печатная форма со штифтовыми отверстиями: L — формат поля изображения; S — передняя кромка формы; D — расстояние между пазами

Для пробивки штифтовых отверстий в фотоформах и формных пластинах применяют специальные устройства — перфораторы с ручным или педальным приводом.

Перед началом экспонирования необходимо тщательно подготовить стекло копировальной рамы — очистить его от загрязнений и пыли с помощью специальных средств.

Пластину помещают в копировальную раму и размещают на ней монтаж фотоформ эмульсионным слоем к копировальному слою пластины. Совмещение пластины и монтажа осуществляется с помощью штифтов, расположенных на специальной линейке. Изображение на пластине должно быть читаемым.

При отсутствии системы штифтовой приводки копировщик отмеряет линейкой с двух сторон заданный размер клапана (расстояние от обрезных меток монтажа до края пластины) и закрепляет монтаж с помощью липкой ленты.

За обрезным полем изображения устанавливаются шкалы контроля копировального процесса СПШ-К, РШ-Ф или контрольная шкала Ugra-82.

Для экспонирования необходимо обеспечить полный контакт между монтажом диапозитивов и поверхностью пластины, который достигается за счет двухступенчатого набора вакуума в контактно-копировальной установке.

Режим экспонирования зависит от типа пластины, мощности осветителя (освещенность стекла копировальной рамы должна быть не менее 10 тыс. лк), расстояния от осветителя до стекла копировальной рамы, характера диапозитивов и определяется опытным путем.

Правильность выбора времени экспонирования оценивают по воспроизведению на копии сенситометрической шкалы после ее проявления на форме: для пробной печати должны быть полностью проявлены 3-4 поля шкалы СПШ-К (оптическая плотность 0,45-0,6), для тиражной печати — 4-5 полей (оптическая плотность 0,6-0,75).

С целью сокращения объема корректуры для устранения постороннего изображения (штрихов от краев пленки на монтаже, следов липкой ленты) проводят дополнительное экспонирование с рассеивающей (матированной) пленкой. Время экспонирования с рассеивающей пленкой обычно составляет 1/3 от основного времени экспонирования.

При этом следует иметь в виду, что использование рассеивающей пленки не влияет на воспроизведение мелких растровых точек и штриховых элементов, если они имеют высокую оптическую плотность и контраст. Для высокохудожественных изданий во избежание дефекта непрокопировки следует исключить применение рассеивающей пленки при экспонировании.

Для проявления экспонированную пластину устанавливают на стол загрузки процессора и подают ее на транспортирующие валики. Дальнейшее продвижение пластины происходит автоматически.

В зависимости от типа процессора проявление осуществляется струями раствора, подаваемого на копию из бака секции проявления, или путем погружения копии в кювету с проявляющим раствором с одновременным механическим воздействием ворсистого валика.

Офсетная копия проявляется в соответствии с возможностями процессора при температуре 21-25 °С в течение 20-35 с. Для каждого типа пластин их производители дают рекомендации по составу и расходу проявителя, которые необходимо соблюдать.

Для проявления вручную используются те же проявляющие растворы. Процесс осуществляется при температуре 21-27 °С. При небольшом количестве изображения на форме время проявления составляет 45-60 с. При среднем и большом количестве печатающих элементов рекомендуется сначала проявить пластину в течение 30-40 с, проконтролировать и в случае необходимости продолжить проявление еще 30-40 с. Проявление копии рекомендуется проводить с помощью мягкого тампона. При этом недопустимо попадание абразивных частиц осадка и неразбавленного концентрата проявителя на поверхность пластины.

Скорость движения офсетной копии зависит от типа процессора, времени работы проявителя и его температуры.

Температуру раствора в секции задают на пульте установки режимов в соответствии с техническими параметрами процессора. Необходимо строго соблюдать температурный режим проявляющего раствора. При температуре ниже рекомендуемой возможно неполное удаление копировального слоя с пробельных участков, которое при печатании приведет к эффекту «тенения» формы. Температура выше рекомендуемой делает проявитель более агрессивным, что может привести к повреждению печатающих элементов и снижению тиражестойкости печатных форм.

Проявляющий раствор по мере его истощения необходимо корректировать свежими порциями с последующей полной заменой. В современных процессорах предусмотрена система постоянной подпитки проявителя. Для этого предусмотрена емкость с регенератом, откуда свежие порции проявителя-регенерата подаются в секцию проявления после прохождения каждой формы.

Промывка осуществляется струйным способом автоматически в секции промывки. Избыток воды на форме отжимается валиками на выходе из секции.

Нанесение защитного покрытия (гуммирование) на форму осуществляется валковым способом автоматически с последующим отжимом на выходе из секции. Валики для нанесения защитного покрытия необходимо тщательно промывать водой перед началом работы.

Сушка осуществляется обдувом формы с помощью вентиляторов воздухом, подогретым до 40-60 °С при прохождении через секцию сушки. Для контроля качества готовую форму переносят на стол для корректуры и тщательно просматривают. Пробельные элементы формы должны быть полностью проявлены. Все дефекты пробельных элементов: следы от приклеивающего материала, тень от краев диапозитива, излишние метки и кресты и т.п. — удаляют с помощью корректирующего карандаша «минус» или тонкой кисти, смоченной гелем для корректуры. Корректуру проводят по защитному покрытию. В корректирующем составе копировальный слой полностью растворяется, поэтому наносить его следует очень аккуратно, не затрагивая изображения. Время действия корректуры до визуального растворения слоя — 5-10 с.

Дефекты печатающих элементов: пробелы на плашках, отсутствие части рисунка и т.п. — исправляют с помощью корректирующего карандаша «плюс»: на отсутствующие элементы наносят тонкий слой лака и проводят локальное нагревание для его закрепления.

Откорректированную форму подвергают дополнительной обработке, для чего ее вводят в секцию промывки процессора, затем снова наносят защитное покрытие и производят сушку. Форма готова!

Термообработку проводят в специальных установках — печах для обжига, состоящих из стола загрузки, термошкафа и стола выгрузки.

Формы, предназначенные для термообработки, обязательно покрывают слоем коллоида с целью защиты пробельных элементов от обезвоживания, а печатающих элементов — от растрескивания.

Защитное покрытие наносят на чистые формы, предварительно удалив с них гуммирующий слой, — вручную на столе или в процессоре. В последнем случае коллоид заливают в секцию нанесения защитного покрытия. Форму устанавливают на стол загрузки и подают на транспортирующие ролики. Дальнейшее продвижение осуществляется автоматически.

Температуру и время термообработки задают на пульте установки режимов: температура 180-240 °С, время 3-5 мин. После термообработки проводят визуальный контроль формы: изображение становится темным, насыщенным и имеет одинаковый цвет по всему формату. Слой коллоида может служить защитным покрытием при хранении форм не более суток. Для длительного хранения форм его удаляют с поверхности теплой водой с помощью губки и наносят обычное защитное покрытие.

Формы перекладывают листами чистой бумаги и хранят в горизонтальном положении на стеллажах в помещении с неактиничным освещением, вдали от отопительных приборов.

Рис. 5. Схема процесса изготовления офсетных форм по технологии «компьютер — печатная форма»

Процесс изготовления офсетных печатных форм с использованием технологии «компьютер — печатная форма» (рис. 5) включает следующие операции:

  • передача цифрового файла, содержащего данные о цветоделенных изображениях полноформатного печатного листа в растровый процессор (РИП);
  • автоматическая загрузка формной пластины в формовыводное устройство;
  • обработка цифрового файла в РИП (прием, интерпретация данных, растрирование изображения с данной линиатурой и типом растра);
  • поэлементная запись цветоделенных изображений полноформатных печатных листов на формной пластине путем ее экспонирования в формовыводном устройстве;
  • обработка формной копии (проявление, промывка, нанесение защитного слоя, сушка, включая, при необходимости для некоторых типов пластин, предварительный подогрев копии) в процессоре для обработки офсетных формных пластин;
  • контроль качества и техническая корректура (при необходимости) печатных форм на столе или конвейере для просмотра форм;
  • дополнительная обработка (промывка, нанесение защитного слоя, сушка) откорректированных печатных форм в процессоре;
  • термообработка (при необходимости повышения тиражестойкости) форм в печи для обжига;
  • пробивка штифтовых (приводочных) отверстий с помощью перфоратора (в случае отсутствия встроенного перфоратора в формовыводном устройстве).

Для изготовления офсетных печатных форм по технологии «компьютер — печатная форма» используются светочувствительные (фотополимерные и серебросодержащие) и термочувствительные формные пластины (цифровые), в том числе не нуждающиеся в химической обработке после экспонирования.

Пластины на основе фотополимерного слоя чувствительны к излучению видимой части спектра. В настоящее время распространены пластины для зеленого (532 нм) и фиолетового (410 нм) лазеров. Структура пластин такова (рис. 6): на стандартную анодированную и зерненую алюминиевую основу нанесен слой мономера, защищенный от окисления и полимеризации специальной пленкой, которая при дальнейшей обработке растворяется водой. Под воздействием света заданной длины волны в слое мономера образуются центры полимеризации, затем пластина подвергается прогреву, в ходе которого процесс полимеризации ускоряется. Полученное скрытое изображение протравливается проявителем, при этом вымывается неполимеризованный мономер, а полимеризованные печатающие элементы остаются на пластине. Фотополимерные офсетные пластины предназначены для экспонирования в формовыводных устройствах с лазером видимого света — зеленым или фиолетовым.

Благодаря высокой скорости экспонирования и простоте обработки эти пластины широко применяются и обеспечивают возможность получения 2-98%-ной растровой точки при линиатуре до 200 lpi. Если их не подвергать дополнительной термообработке, пластины выдерживают до 150-300 тыс. оттисков. После обжига — более миллиона оттисков. Энергочувствительность фотополимерных пластин составляет от 30 до 100 мкДж/см2. Все операции с пластинами необходимо проводить при желтом свете.

Пластины на основе серебросодержащей эмульсии также чувствительны к излучению видимой части спектра. Существуют пластины для красного (650 нм), зеленого (532 нм) и фиолетового (410 нм) лазеров. Принцип образования печатающих элементов сходен с фотографическим — разница заключается в том, что на фотографии кристаллы серебра, на которые попал свет, остаются в эмульсии, а остальное серебро вымывается фиксажем, тогда как на пластинах серебро с незасвеченных участков переходит на алюминиевую подложку и становится печатающими элементами, а эмульсия вместе с оставшимся в ней серебром полностью смывается.

В последние годы всё более широкое применение находят пластины, светочувствительные к фиолетовой области спектра излучения (400-430 нм). В связи с этим многие формовыводные устройства оснащаются фиолетовым лазером. В процессе экспонирования этих пластин (рис. 7) луч фиолетового лазера активирует серебросодержащие частицы на пробельных элементах. Незасвеченные участки после обработки проявителем формируют печатающие элементы.

В процессе проявления серебросодержащие частицы активируются, при этом у них возникают устойчивые связи с желатиной. Частицы, которые не были засвечены, остаются подвижными и способными к диффузии.

На следующей стадии не подвергшиеся засветке ионы серебра диффундируют из эмульсионного слоя через барьерный слой на поверхность алюминиевой основы, формируя на нем печатающие элементы.

После того как изображение полностью сформировано, желатиновая фракция эмульсии и растворимый в воде барьерный слой полностью удаляются во время смывки, оставляя на алюминиевой основе только печатающие элементы в виде осажденного серебра.

Эти пластины обеспечивают получение 2-98%-ной точки при 250 lpi, их тиражестойкость составляет 200-350 тыс. оттисков, а светочувствительность максимальна. Энергочувствительность пластин находится в интервале от 1,4 до 3 мкДж/см.

Благодаря высокой чувствительности для экспонирования пластины требуется меньше времени и энергии. Это, в свою очередь, приводит как к повышению производительности формовыводного устройства, так и к снижению потребляемой лазером мощности и к продлению срока его службы. В результате использования тонкого серебряного слоя, который более чем на порядок тоньше полимерного, уменьшается растискивание краски, что ведет к повышению качества оттиска. Все операции с пластинами необходимо проводить при желтом свете. Пластины на основе серебросодержащей эмульсии не рекомендуется применять для печатания УФ-красками, а также подвергать обжигу.

Термочувствительные пластины имеют следующую структуру: на алюминиевую основу нанесен слой полимерного материала (термополимер). Под воздействием ИК-излучения покрытие разрушается либо меняет свои физико-химические свойства, в результате при последующей химической обработке образуются пробельные (в случае позитивного материала) или печатающие (при негативном процессе) элементы. Для экспонирования таких пластин используют лазер с длиной волны излучения 830 или 1064 нм.

Рис. 8. Технологический процесс записи и обработки термопластин: 1 — эмульсионный слой (термополимер); 2 — алюминиевая подложка; 3 — луч лазера; 4 — экспонированный термополимер; 5 — нагревательный элемент; 6 — печатающие элементы формы; 7 — проявляющий раствор; 8 — печатная краска

Разрешающая способность термочувствительных пластин может обеспечить запись изображения с линиатурой до 330 lpi, что соответствует получению однопроцентной точки размером 4,8 мкм. При этом тиражестойкость полученных печатных форм достигает 250 тыс. оттисков без обжига и 1 млн оттисков с обжигом. Процесс обработки этих пластин после экспонирования состоит из трех ступеней (рис. 8):

  • предварительный обжиг — поверхность формы подвергается обжигу примерно в течение 30 с при температуре 130-145 °С. Этот процесс укрепляет печатающие (чтобы они не смогли раствориться в проявителе) и размягчает пробельные элементы. Предварительный обжиг является обязательной операцией;
  • проявление — стандартный позитивный проявочный процесс: погружение в раствор, обработка щетками, промывка, гуммирование и форсированная воздушная сушка;
  • обжиг — после обработки пластина подвергается обжигу в течение 2,5 мин при температуре от 200 до 220 °С, чтобы обеспечить ее прочность и большую тиражестойкость.

В настоящее время на российском рынке представлен широкий ассортимент термочувствительных пластин, в том числе и пластин нового поколения, которые не требуют предварительного нагрева для обработки. Эти пластины в большинстве своем обеспечивают получение 1-99%-ной точки при линиатуре растра 200 lpi, тиражестойкость 150 тыс. оттисков без обжига, а светочувствительность у них различается, находясь в интервале от 110 до 200 мДж/см2.

Для химической обработки экспонированных пластин рекомендуется применять реактивы того же производителя, предназначенные для материалов данного типа. Это позволяет гарантированно достичь высоких технических характеристик, потенциально заложенных в современном формном материале.

Формные пластины, не нуждающиеся в химической обработке после экспонирования, называют беспроцессными. В настоящее время разработано два вида формных материалов, не нуждающихся в химической обработке: с термически удаляемыми слоями (термоабляционные) и со слоями, изменяющими фазовое состояние.

Термоабляционные пластины являются многослойными, а пробельные элементы в них формируются на поверхности специального гидрофильного или олеофобного слоя. В процессе экспонирования происходит избирательное термическое удаление ИК-излучением (830 нм) специального слоя. Существуют позитивные и негативные версии термоабляционных пластин. В негативных пластинах олеофобный слой находится выше олеофильного печатающего слоя, и в процессе экспонирования происходит его абляция с будущих печатающих элементов формы. В позитивных пластинах все наоборот: выше находится олеофильный печатающий слой, удаляемый в процессе экспонирования с будущих пробельных элементов формы. Продукты горения удаляются системой вытяжки, которой должно быть оснащено формовыводное устройство, а после экспонирования пластина промывается водой.

Основой термоабляционных формных материалов служат алюминиевые пластины или полиэфирные пленки.

К недостаткам беспроцессных пластин можно отнести более высокую цену и низкую тиражестойкость (около 100 тыс. оттисков).

В оперативной полиграфии при производстве малотиражной продукции, не требующей высокого качества (инструкции, бланки и т. п.), находят применение офсетные печатные формы на бумажной и полимерной основе.

Офсетные печатные формы на бумажной основе выдерживают тиражи до 5 тыс. экземпляров, однако из-за пластической деформации увлажненной бумажной основы в зоне контакта формного и офсетного цилиндров штриховые элементы и растровые точки сюжета искажаются, поэтому бумажные формы могут быть использованы только для однокрасочной печати.

Технология изготовления бумажных офсетных форм основана на принципах электрофотографии, заключающихся в применении фотополупроводящей поверхности для образования скрытого электростатического изображения, которое впоследствии проявляется.

В качестве формного материала используется специальная бумажная подложка с нанесенным на нее фотопроводниковым покрытием (оксид цинка). Формный материал в зависимости от типа обрабатывающего устройства может быть листовой и рулонный.

Достоинствами этой технологии являются оперативность изготовления печатной формы (менее минуты), простота использования и низкая расходная стоимость. Такие печатные формы могут быть получены путем прямой записи текстовой и изобразительной информации в обычном лазерном электрофотографическом принтере. При этом никакой дополнительной обработки форм не требуется.

Формы на полимерной основе, например полиэстровой, имеют максимальную тиражестойкость до 20 тыс. оттисков хорошего качества с линиатурой до 175 lpi и градационным диапазоном 3-97%.

Основой технологии является полиэстровый рулонный светочувствительный материал, работающий по принципу внутреннего диффузионного переноса серебра. В процессе экспонирования происходит засветка галогенида серебра. При химической обработке осуществляется диффузионный перенос серебра из незасвеченных областей в верхний слой, восприимчивый к краске. Этот технологический процесс требует негативного экспонирования. Экспонирование полиэстровых материалов может осуществляться на некоторых типах фотовыводных устройств.

Рис. 9. Схема процесса получения офсетных печатных форм по технологии «компьютер — печатная машина»

Процесс получения офсетных печатных форм по технологии «компьютер — печатная машина» включает следующие операции (рис. 9):

  • передача цифрового файла, содержащего данные о цветоделенных изображениях полноформатного печатного листа, в растровый процессор изображения (РИП);
  • обработка цифрового файла в РИП (прием, интерпретация данных, растрирование изображения с заданной линиатурой и типом растра);
  • поэлементная запись на формном материале, размещенном на формном цилиндре цифровой печатной машины, изображения полноформатного печатного листа;
  • печатание тиражных оттисков.

Одной из таких технологий, реализованных в цифровых печатных машинах офсетной печати без увлажнения, является обработка тонкого покрытия. В этих машинах используется рулонный формный материал, на полиэстровую основу которого нанесены теплопоглощающий и силиконовый слои. Поверхность силиконового слоя отталкивает краску и образует пробельные элементы, а удаленный лазерным излучением термопоглощающий слой — печатающие элементы.

Другой технологией получения форм офсетной печати непосредственно в цифровой печатной машине является передача на поверхность формы термополимерного материала, находящегося на передающей ленте, под действием инфракрасного лазерного излучения.

Изготовление офсетных печатных форм непосредственно на формном цилиндре печатной машины сокращает продолжительность формного процесса и повышает качество печатных форм за счет уменьшения числа технологических операций.

Loading...Loading...